
CS 528 Mobile and Ubiquitous
Computing

Lecture 6a: Maps & Sensors

Emmanuel Agu

Administrivia

 Groups should submit 1-slide on their final project (due next
class)

Using Maps

MapView and MapActivity

 MapView: UI widget that displays maps

 MapActivity: java class (extends Activity),
handles map-related lifecycle and
management for displaying maps.

7 Steps for using Google Maps Android API
https://developers.google.com/maps/documentation/android-api/start

1. Install Android SDK (Done!!)

 https://developer.android.com/studio/index.html

2. Add Google Play services to Android Studio

3. Create a Google Maps project

4. Obtain Google Maps API key

5. Hello Map! Take a look at the code

6. Connect an Android device

7. Build and run your app

Step 2: Add Google Play Services to Android Studio
https://developers.google.com/maps/documentation/android-api/start

 Google Maps API v2 is part of Google Play Services SDK

 Use Android Studio SDK manager to download Google Play services

Check Google Play Services, then Ok

Open SDK Manager

Click on SDK Tools

Step 3: Create new Android Studio Project
https://developers.google.com/maps/documentation/android-api/start

 Select “Google Maps Activity, click Finish

Step 4: Get Google Maps API key
https://developers.google.com/maps/documentation/android-api/start

 To access Google Maps servers using Maps API, must add Maps API key to app

 Maps API key is free. E.g.

 Google uses API key to uniquely identify your app, track its resource usage, etc

Step 4a: Fast, Easy way to get Maps API Key
https://developers.google.com/maps/documentation/android-api/start

 Copy link provided in google_maps_api.xml of Maps template into browser

 Goes to Google API console, auto-fills form

 Creates API key

Step 4a: Fast, Easy way to get Maps API Key
https://developers.google.com/maps/documentation/android-api/start

 If successful, Maps API key generated

 Copy key, put it in <string> element in google_maps_api.xml file

Step 4b: Longer (older) way to API key

 If easy way doesn’t work, older way to obtain a Maps API key

 Follow steps at:

 See: https://developers.google.com/maps/documentation/android-api/signup

Step 5: Examine Code Generated buy Android
Studio Maps Template

 XML file that defines layout is in res/layout/activity_maps.xml

Step 5: Examine Code Generated buy Android
Studio Maps Template

 Default Activity file
is MapActivity.java

Steps 6, 7

 Step 6: Connect to an Android device
(smartphone)

 Step 7: Run the app
 Should show map with a marker on Sydney

Australia

 More code examples at:
 https://github.com/googlemaps/android-

samples

AsyncTask API

AsyncTask API

 For compute intensive tasks, remote or tasks that take a long
time, doing it in main activity blocks

 AsyncTask: spawn separate thread to offload such task, free
up main Activity

Android Sensors

What is a Sensor?

 Converts physical quantity (e.g. light, acceleration,
magnetic field) into a signal

 Example: accelerometer converts acceleration along X,Y,Z
axes into signal

So What?

 Raw sensor data can be processed into useful info

 Example: Raw accelerometer data can be processed/classified to
infer user’s activity (e.g. walking running, etc)

 Voice samples can be processed/classified to infer whether
speaker is nervous or not

Raw accelerometer

readings

Walking

Running

Jumping

Step count

Calories burned

Falling

Machine learning

Feature extraction

and classification

Android Sensors

 Microphone (sound)

 Camera

 Temperature

 Location (GPS, A-GPS)

 Accelerometer

 Gyroscope (orientation)

 Proximity

 Pressure

 Light

 Different phones do not

have all sensor types!!

AndroSensor Android

Sensor Box

Android Sensor Framework
http://developer.android.com/guide/topics/sensors/sensors_overview.html

 Enables apps to:

 Access sensors available on device and

 Acquire raw sensor data

 Specifically, using the Android Sensor Framework, you can:
 Determine which sensors are available on phone

 Determine capabilities of sensors (e.g. max. range, manufacturer, power
requirements, resolution)

 Register and unregister sensor event listeners

 Acquire raw sensor data and define data rate

Android Sensor Framework
http://developer.android.com/guide/topics/sensors/sensors_overview.html

 Android sensors can be either hardware or software

 Hardware sensor:

 physical components built into phone,

 Example: temperature

 Software sensor (or virtual sensor):

 Not physical device

 Derives their data from one or more hardware sensors

 Example: gravity sensor

Sensor Types Supported by Android

 TYPE_PROXIMITY
 Measures an object’s

proximity to device’s screen

 Common uses: determine if
handset is held to ear

 TYPE_GYROSCOPE
 Measures device’s rate of rotation

around X,Y,Z axes in rad/s

 Common uses: rotation detection
(spin, turn, etc)

Types of Sensors

Sensor HW/SW Description Use

TYPE_ACCELEROMETER HW Rate of change of velocity Shake, Tilt

TYPE_AMBIENT_TEMPERATURE HW Room temperature Monitor Room temp

TYPE_GRAVITY SW/HW Gravity along X,Y,Z axes Shake, Tilt

TYPE_GYROSCOPE HW Rate of rotation Spin, Turn

TYPE_LIGHT HW Illumination level Control Brightness

TYPE_LINEAR_ACCELERATION SW/HW Acceleration along X,Y,Z – g Accel. Along an axis

TYPE_MAGNETIC_FIELD HW Magnetic field Create Compass

TYPE_ORIENTATION SW Rotation about X,Y,Z axes Device position

TYPE_PRESSURE HW Air pressure Air pressure

TYPE_PROXIMITY HW Any object close to device? Phone close to face?

TYPE_RELATIVE_HUMIDITY HW % of max possible humidity Dew point

TYPE_ROTATION_VECTOR SW/HW Device’s rotation vector Device’s orientation

TYPE_TEMPERATURE HW Phone’s temperature Monitor temp

2 New Hardware Sensor introduced in Android 4.4

 TYPE_STEP_DETECTOR
 Triggers sensor event each time user takes a step (single step)

 Delivered event has value of 1.0 + timestamp of step

 TYPE_STEP_COUNTER
 Also triggers a sensor event each time user takes a step

 Delivers total accumulated number of steps since this sensor was first
registered by an app,

 Tries to eliminate false positives

 Common uses: step counting, pedometer apps

 Requires hardware support, available in Nexus 5

 Alternatively available through Google Play Services (more later)

Sensor Programming

 Sensor framework is part of android.hardware

 Classes and interfaces include:
 SensorManager

 Sensor

 SensorEvent

 SensorEventListener

 These sensor-APIs used for:
1. Identifying sensors and sensor capabilities

2. Monitoring sensor events

Sensor Events and Callbacks

 Sensors send events to sensor
manager asynchronously, when
new data arrives

 General approach:
 App registers callbacks

 SensorManager notifies app of
sensor event whenever new data
arrives (or accuracy changes)

Sensor

 A class that can be used to create
instance of a specific sensor

 Has methods used to determine a
sensor’s capabilities

 Included in sensor event object

SensorEvent

 Android system sensor event information as a sensor event
object

 Sensor event object includes:
 Sensor: Type of sensor that

generated the event

 Values: Raw sensor data

 Accuracy: Accuracy of the data

 Timestamp: Event timestamp

Sensor value depends

on sensor type

Sensor Values
Depend on
Sensor Type

Sensor Values Depend on Sensor Type

SensorEventListener

 Interface used to create 2 callbacks that receive
notifications (sensor events) when:

 Sensor values change (onSensorChange()) or

 When sensor accuracy changes (onAccuracyChanged())

Sensor API Tasks

 Sensor API Task 1: Identifying sensors and their capabilities

 Why identify sensor and their capabilities at runtime?

 Disable app features using sensors not present, or

 Choose sensor implementation with best performance

 Sensor API Task 2: Monitor sensor events

 Why monitor sensor events?

 To acquire raw sensor data

 Sensor event occurs every time sensor detects change in parameters
it is measuring

Sensor Availability

 Different sensors are available on different Android versions

Identifying Sensors and Sensor Capabilities

 First create instance of SensorManager by calling
getSystemService() and passing in SENSOR_SERVICE argument

 Then list sensors available on device by calling getSensorList()

 To list particular type, use TYPE_GYROSCOPE, TYPE_GRAVITY, etc

http://developer.android.com/guide/topics/sensors/sensors_overview.html

Checking if Phone has at least one of particular Sensor Type

 Device may have multiple sensors of a particular type.
 E.g. multiple magnetometers

 If multiple sensors of a given type exist, one of them must be designated “the
default sensor” of that type

 To determine if specific sensor type exists use getDefaultSensor()

 Example: To check whether device has at least one magnetometer

Example: Monitoring Light Sensor Data

 Goal: Monitor light sensor data using onSensorChanged(), display it in a
TextView defined in main.xml

Create instance of

Sensor manager

Get default

Light sensor

Called by Android system when accuracy of sensor being monitored changes

Example: Monitoring Light Sensor Data (Contd)

Get new light sensor value

Unregister sensor if app

is no longer visible to

reduce battery drain

Register sensor when app becomes visible

Called by Android system to report new sensor value

Provides SensorEvent object containing new sensor data

Handling Different Sensor Configurations

 Different phones have different sensors built in

 E.g. Motorola Xoom has pressure sensor, Samsung Nexus S doesn’t

 If app uses a specific sensor, how to ensure this sensor exists on target device?

 Two options

 Option 1: Detect device sensors at runtime, enable/disable app features as
appropriate

 Option 2: Use AndroidManifest.xml entries to ensure that only devices possessing
required sensor can see app on Google Play

 E.g. following manifest entry in AndroidManifest ensures that only devices with
accelerometers will see this app on Google Play

Option 1: Detecting Sensors at Runtime

 Following code checks if device has at least one pressure sensor

Example Step Counter App

 Goal: Track user’s steps, display it in TextView

 Note: Phone hardware must support step counting

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Example Step Counter App (Contd)

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Example Step Counter App (Contd)

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

References

 John Corpuz, 10 Best Location Aware Apps

 Liane Cassavoy, 21 Awesome GPS and Location-Aware Apps
for Android,

 Head First Android

 Android Nerd Ranch, 2nd edition

 Busy Coder’s guide to Android version 6.3

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

