
CS 528 Mobile and Ubicomp
Lecture 3b: Activity Lifecycle, Rotating

Device, Saving Data & Intents

Emmanuel Agu

Android Activity LifeCycle

Starting Activities
 Android Activity callbacks invoked corresponding to app state.

 Examples:

 When activity is created, its onCreate() method invoked (like constructor)

 When activity is paused, its onPause() method invoked

Android OS

Android Activity

onCreate()

onStart()

onResume()

onPause()

……

Android OS invokes specific

callbacks when certain events occur

Programmer writes code in callbacks

to respond to event

Activity Callbacks

 onCreate()

 onStart()

 onResume()

 onPause()

 onStop()

 onRestart()

 onDestroy()

Already saw this (initially called)

Android OS

Android App

onCreate()

onStart()

onResume()

onPause()

……

Android OS invokes specific

callbacks when specific events occur

IMPORTANT: Android OS invokes all

callbacks!!

Understanding Android Lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle.html

 Many disruptive things could happen while app is running

 Incoming call or text message, user switches to another app, etc

 Well designed app should NOT:
 Crash if interrupted, or user switches to other app

 Lose the user's state/progress (e.g state of chess game app) if they leave
your app and return later

 Crash or lose the user's progress when the screen rotates between
landscape and portrait orientation.

 E.g. Youtube video should continue at correct point after rotation

 To handle these situations, appropriate callback methods must be invoked
appropriately to “tidy up” before app gets bumped

OnCreate()
 Initializes activity once created

 Operations typically performed in onCreate() method:
 Inflate (create) widgets and place them on screen

 (e.g. using layout files with setContentView())

 Getting references to inflated widgets (using findViewbyId())

 Setting widget listeners to handle user interaction

 E.g.

 Note: Android OS calls apps’ onCreate() method

Running App

 A running app is one that user is currently using
or interacting with

 Visible, in foreground

Paused App
 An app is paused if it is visible but no longer in

foreground

 E.g. blocked by a pop-up dialog box

 App’s onPause() method is called during transition
from running to paused state

Paused

Running

onPause() Method
 Typical actions taken in onPause() method

 Stop animations or CPU intensive tasks

 Stop listening for GPS, broadcast information

 Release handles to sensors (e.g GPS, camera)

 Stop audio and video

Paused

Running

onResume(): Resuming Paused App

 A paused app resumes running if it becomes fully
visible and in foreground

 E.g. pop-up dialog box blocking it goes away

 App’s onResume() method is called during transition
from paused to running state
 Restart videos, animations, GPS checking, etc

Paused

Running

Stopped App

 An app is stopped if it’s no longer visible + no longer in
foreground

 E.g. user starts using another app

 App’s onStop() method is called during transition
from paused to stopped state

Running

onStop() Method

 An activity is stopped when:

 User receives phone call

 User starts another app

 Activity instance and variables of stopped app are
retained but no code is being executed by the
activity

 If activity is stopped, in onStop() method, well
behaved apps should

 save progress to enable seamless restart later

 Release all resources, save info (persistence)

Resuming Stopped App

 A stopped app can go back into running state if
becomes visible and in foreground

 App’s onStart() and onResume() methods called
to transition from stopped to running state

Running

Starting New App

 To launch new app, get it to running

 App’s onCreate(), onStart() and
onResume() methods are called

 Afterwards new app is running

Logging Errors in Android

Logging Errors in Android

 Android can log and display various types of errors/warnings in Android
Studio Window

 Error logging is in Log class of android.util package, so need to

import android.util.Log;

 Turn on logging of different message types by calling appropriate method

Ref: Introduction to Android Programming,

Annuzzi, Darcey & Conder

QuizActivity.java

 A good way to understand Android lifecycle methods is to print
debug messages in Android Studio when they are called

onCreate(){

… print message “OnCreate called”…

}

onStart(){

… print message “OnStart called”…

}

… etc

QuizActivity.java

 Example: print debug message from
onCreate method below

QuizActivity.java

 Debug (d) messages have the form

 E.g.

 Example declaration:

 Then declare string for TAG

QuizActivity: onCreate(Bundle) called

Tag Message

QuizActivity.java

 Putting it all together

QuizActivity.java

 Can overide more
lifecycle methods

 Print debug messages
from each method

QuizActivity.java Debug Messages

 Launching GeoQuiz app activities OnCreate, OnStart
and onResume methods

 Pressing Back button destroys the activity (calls
onPause, onStop and onDestroy)

Rotating Device

Rotating Device: Using Different Layouts
 Rotating device (e.g. portrait to landscape) kills current

activity and creates new activity in landscape mode

 Rotation changes device configuration

 Device configuration: screen orientation/density/size,
keyboard type, dock mode, language, etc.

 Apps can specify different resources (e.g. XML layout
files, images) to use for different device configurations

 E.g. use different app layouts for portrait vs landscape
screen orientation

Use landscape

XML layout

Use portrait

XML layout

Rotating Device: Using Different Layouts

 Portrait: use XML layout file in res/layout

 Landscape: use XML layout file in res/layout-land/

 Copy XML layout file (activity_quiz.xml) from res/layout
to res/layout-land/ and customize it

 If configuration changes, current activity destroyed,
onCreate -> setContentView (R.layout.activity_quiz)
called again

onCreate called whenever user

switches between portrait and landscape

Dead or Destroyed Activity

 onDestroy() called to destroy a stopped app

Saving State Data

Activity Destruction

 App may be destroyed

 On its own by calling finish

 If user presses back button

 Before Activity destroyed, system calls
onSaveInstanceState

 Can save state required to recreate Activity later
 E.g. Save current positions of game pieces

onSaveInstanceState: Saving App State

 Systems write info about views to Bundle

 Programmer must save other app-specific
information using onSaveInstanceState()
 E.g. board state in a board game such as

mastermind

onRestoreInstanceState(): Restoring State Data

Can restore state data in either method

 When an Activity recreated saved data sent to onCreate and
onRestoreInstanceState()

 Can use either method to restore app state data

Saving Data Across Device Rotation

 Since rotation causes activity to be destroyed and new
one created, values of variables lost or reset

 To avoid losing or resetting values, save them using
onSaveInstanceState before activity is destroyed
 E.g. called before portrait layout is destroyed

 System calls onSaveInstanceState before onPause(),
onStop() and onDestroy()

Saving Data Across Device Rotation

 For example, to save the value of a variable
mCurrentIndex during rotation

 First, create a constant KEY_INDEX as a key for storing
data in the bundle

 Then override onSaveInstanceState method

Question

 Whenever I watch YouTube video on my
phone, if I receive a phone call and video
stops at 2:31, after call, when app
resumes, it should restart at 2:31.

 How do you think this is implemented?

 In which Android methods should code
be put into?

 How?

Intents

Intent

 Intent: a messaging object used by a component to request
action from another app or component

 3 main use cases for Intents

 Case 1 (Activity A starts Activity B, no result back):
 Call startActivity(), pass an Intent

 Intent has information about Activity to start, plus any necessary data

Intent: Result Received Back

 Case 2 (Activity A starts Activity B, gets result back):
 Call startActivityForResult(), pass an Intent

 Separate Intent received in Activity A’s onActivityResult() callback

Intent: Result Received Back

 Case 3 (Activity A starts a Service):
 E.g. Activity A starts service to download big file in the background

 Activity A calls StartService(), passes an Intent

 Intent contains information about Service to start, plus any necessary data

Implicit Vs Explicit Intents

 Explicit Intent: If components sending and receiving Intent
are in same app
 E.g. Activity A starts Activity B in same app

 Activity A explicitly says what Activity (B) should be started

 Implicit Intent: If components sending and receiving Intent
are in different apps
 Activity B specifies what ACTION it needs done, doesn’t specify Activity

to do it

 Example of Action: take a picture, any camera app can handle this

Intent Example:
Starting Activity 2

from Activity 1

Allowing User to Cheat
Ref: Android Nerd Ranch (3rd edition) pg 91

 Goal: Allow user to cheat by getting answer to quiz

 Screen 2 pops up to show Answer

Activity 1 Activity 2

User clicks here

to cheat
Ask again.

Click here

to cheat

Correct

Answer

If user

cheated

Add Strings for Activity 1 and Activity 2 to
strings.xml

Create Empty Activity (for Activity 2) in Android Studio

Specify Name and XML file for Activity 2

Layout uses

activity_cheat.xml

Screen 2 Java code

in CheatActivity.java

Design Layout for Screen 2

Write XML Layout Code for Screen 2

Activity 2

Declare New Activity (CheatActivity)
in AndroidManifest.xml

Activity 2 (CheatActivity)

Activity 2 (CheatActivity)

Activity 1

Starting Activity 2 from Activity 1

 Activity 1 starts activity 2
 through the Android OS

 by calling startActivity(Intent)

 Passes Intent (object for communicating with Android OS)

 Intent specifies which (target) Activity Android
ActivityManager should start

Starting Activity 2 from Activity 1

 Intents have many different constructors. We will use form:

 Actual code looks like this

Parent

Activity
New Activity 2

Build Intent

Use Intent to Start new Activity

Implicit vs Explicit Intents

 Previous example is called an explicit intent
 Activity 1 and activity 2 are in same app

 If Activity 2 were in another app, an implicit intent would
have to be created instead

 Can also pass data between Activities 1 and 2
 E.g. Activity 1 can tell Activity 2 correct answer (True/False)

Passing Data Between Activities
 Need to pass answer (True/False from QuizActivity to CheatActivity)

 Pass answer as extra on the Intent passed into StartActivity

 Extras are arbitrary data calling activity can include with intent

 To add extra to Intent, use putExtra() command

 Encapsulate Intent creation into a method newIntent()

 When user clicks cheat button, build Intent, start new Activity

Passing Answer (True/False) as Intent Extra

Intent

 Activity receiving the Intent retrieves it using getBooleanExtra()

Passing Answer (True/False) as Intent Extra

Intent

(Answer = Extra)

Calls

getIntent()

Important: Read Android Nerd

Ranch (3rd edition) pg 91

Calls

startActivity(Intent)

Implicit Intents

 Implicit Intent: Does not name component to start.

 Specifies

 Action (what to do, example visit a web page)

 Data (to perform operation on, e.g. web page url)

 Typically, many components (apps) can take a given action
 E.g. Many phones have installed multiple apps that can view images

 System decides component to receive intent based on action, data, category

 Example Implicit Intent to share data

ACTION (No receiving Activity

specified)

Data type

References

 Busy Coder’s guide to Android version 4.4

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

