CS 528 Mobile and Ubiquitous Computing
Lecture 6a: Other Android UbiComp Components, Tech Talk, Final Project Proposal & Smartphone Sensing

Emmanuel Agu
What other Android APIs may be useful for Mobile/ubicomp?
Speaking to Android

https://developers.google.com/voice-actions/

- **Speech recognition:**
 - Accept inputs as speech (instead of typing) e.g. dragon dictate app?
 - Note: Requires internet access

- **Two forms**
 1. **Speech-to-text**
 - Convert user’s speech to text. E.g. display voicemails in text
 2. **Voice Actions:** Voice commands to smartphone (e.g. set alarm)
Google Voice Actions
https://developers.google.com/voice-actions/

- E.g. Tell Google to set an alarm
Gestures

https://developer.android.com/training/gestures/index.html

- **Gesture:** Hand-drawn shape on the screen
- **Example uses:**
 - Search your phone, contacts, etc by handwriting onto screen
 - Speed dial by handwriting first letters of contact’s name
 - Multi-touch, pinching
More MediaPlayer & RenderScript

- MediaRecorder is used to **record** audio
 - Manipulate raw audio from microphone/audio hardware, PCM buffers
 - E.g. if you want to do audio signal processing, speaker recognition, etc
 - **Example:** process user’s speech, detect emotion, nervousness?
 - Can playback recorded audio using MediaPlayer

- **RenderScript**
 - High level language for computationally intensive tasks/GPGPU,
 - Can be used to program phone CPU, GPU in a few lines of code
 - Use Phone’s Graphics Processing Unit (GPU) for computational tasks
 - Useful for heavy duty tasks. E.g. image processing, computational photography, or computer vision
Wireless Communication

- Bluetooth
 - Discover, connect to nearby bluetooth devices
 - Communicating over Bluetooth
 - Exchange data with other devices

- WiFi
 - Scan for WiFi hotspots
 - Monitor WiFi connectivity, Signal Strength (RSSI)
 - Do peer-to-peer (mobile device to mobile device) data transfers
Wireless Communication

- **NFC:**
 - Contactless, transfer small amounts of data over short distances
 - **Applications:** Share spotify playlists, Google wallet
 - **Android Pay**
 - Store debit, credit card on phone
 - Pay by tapping terminal
Telephony and SMS

- **Telephony:**
 - Initiate phone calls from within app
 - Access dialer app, etc

- **SMS:**
 - Send/Receive SMS/MMS from app
 - Handle incoming SMS/MMS in app
Google Play Services: Nearby Connections API
https://developers.google.com/nearby/connections/overview

- Peer-to-peer networking API, allows devices communicate over a LAN
- Allows one device to serve as host, advertise
- Other devices can discover host, connect, disconnect
- **Use case**: Multiplayer gaming, shared virtual whiteboard
- Good tutorial by Paul Trebilcox-Ruiz

https://code.tutsplus.com/tutorials/google-play-services-using-the-nearby-connections-api--cms-24534?_ga=2.245472388.1231785259.1517367257-742912955.1516999489
Google Android Samples

- Android Studio comes with many sample programs
- Just need to import them
Google Android Samples

- Can click on any sample, read overview
- Source code available on github
- Tested, already working
Other 3rd Party Stuff

http://web.cs.wpi.edu/~emmanuel/courses/ubicomp_projects_links.html
https://developer.qualcomm.com/software/trepn-power-profiler

- **MPAndroid**: Add charts to your app

- **Trepn**: Profile power usage and utilization of your app (CPU, GPU, WiFi, etc)
 - By Qualcomm
Other 3rd Party Stuff

http://web.cs.wpi.edu/~emmanuel/courses/ubicomp_projects_links.html

- **Programmable Web APIs:** 3rd party web content (e.g. RESTful APIs) you can pull into your app with few lines of code
 - **Weather:** Weather channel, yahoo weather
 - **Shared interests:** Pinterest
 - **Events:** Evently, Eventful, Events.com
 - **Photos:** flickr, Tumblr
 - **Videos:** Youtube
 - **Traffic info:** Mapquest traffic, Yahoo traffic

- **E.g. National Geographic:** picture of the day
Student Presentation: Mobile Technologies
Talk: Mobile Technology

- GROUP to research, master and present on any TWO mobile technologies.

Your talk should cover:

- Background on the technology (tell a story about its history, etc)
- Specific problems it's designed to solve
- Typical example use case: When is it typically used?
- Real world examples of where it is being used. E.g. by XYZ company for ABC
- Overview of how it works?
- Code snippet: Walk through a simple program that uses the technology including how to compile it and how to run it.
Talk on Mobile Technology

- Submit talk slides + working code
- To avoid duplicate presentations, each group email me their TWO topics by November 1, 2018
- This talk is 15% of your grade!
- The idea is to become expert, help any groups that need your help on that technology
Talk on Mobile Technology

- Mobile programming/development:
 - Kotlin
 - iPhone development
 - 3rd part libraries: E.g. Xamarin
 - Mobile web programming
 - PhoneGap
 - AppInventor
 - Mobile game development tools: Unity,

- Machine/Deep Learning:
 - Deep Learning/machine learning in Android: Tensorflow, etc
 - Mobile machine/deep learning support in MATLAB
 - Keras support for Android Deep learning
 - Neural Networks API (NNAPI)
Talk on Mobile Technology

- More Google APIs (that could be used by mobile devices):
 - Analytics
 - Google Drive
 - Google Fit
 - Google Cast
 - Advertising: E.g. Adwords, Admobs

- More Android APIs:
 - Firebase (database, messaging, authentication, analytics, etc)
 - Speaking to Android (Speech recognition, Voice Actions)
 - Renderscript
 - Media Recorder
 - Wireless Communication: Bluetooth, WiFi, NFC, etc
 - Android Pay
 - Telephone/SMS
 - Nearby Connections API
 - Depth Sensing: Project Tango
 - Augmented Reality: ARtoolkit, vuforia, EasyAR
Final Project Proposal
Final Project Proposal

- While working on projects 3 & 4, also brainstorm on final project.
- Nov 1, Propose mobile/ubicomp app, solves WPI problem or Machine learning.
- Proposals should include:

 1. **Problem you intend to work on**
 - Solve WPI/societal problem (e.g. walking safe at night)
 - Use at least 3 mobile/ubicomp components (e.g. location, sensor or camera)
 - If games, must gamify solution to real world problem

 2. **Why this problem is important**
 - E.g. 37% of WPI students feel unsafe walking home

 3. **Related Work**: What prior solutions have been proposed for this problem

 4. **Summary of envisioned mobile app (?) solution**
 1. E.g. Mobile app automatically texts users friends when they get home at night
Final Project Proposal

- Can also do Machine learning project that classifies/detects analyzes a dataset of builds a real-time app to classify some human sensor data. E.g. Classifies
 - A speaker's voice to determine if nervous, sad, etc
 - A user’s accelerometer data and recognizes their walk from 5-10 other people
 - A picture of a person's face and determines their mood
 - Data from a person's phone to measure their sleep duration or/and quality
 - Video of a person’s face to detects their heart rate
 - A person's communication/phone usage patterns to detect their mood

- See project difficulty points rubric

- Also propose evaluation plan
 - E.g. Small user study to evaluate app.
 - Can trade with another team: you review our app, we review yours
 - Machine learning performance metrics (e.g. classification accuracy, cross validation, etc)

- Can bounce ideas off me (email, or in person)

- Can change idea any time
Rubric: Grading Considerations

- **Problem (10/100)**
 - How much is the problem a real problem (e.g. not contrived)
 - Is this really a good problem that is a good fit to solve with mobile/ubiquitous computing? (e.g. are there better approaches?)
 - How useful would it be if this problem is solved?
 - What is the potential impact on the community (e.g. WPI students) (e.g. how much money? Time? Productivity.. Would be saved?)
 - What is the evidence of the importance? (E.g. quote a statistic)

- **Related Work (10/100)**
 - What else as been done to solve this problem previously

- **Proposed Solution/Classification (10/100)**
 - How good/clever/interesting is the solution?
 - How sophisticated and how are the mobile/ubiquitous computing components (high level) used? (e.g. location, geofencing, activity recognition, face recognition, machine learning, etc)
Rubric: Grading Considerations

● **Implementation Plan + Timeline (10/100)**
 - Clear plans to realize your design/methodology
 - Android modules/3rd party software used
 - Software architecture,
 - Screenshots (or sketches of UI), or study design + timeline

● **Evaluation Plan (10/100)**
 - How will you evaluate your project.
 - E.g. small user studies for apps
 - Machine learning cross validation, etc

● 50 more points allotted for your slides + presentation
Final Project: Proposal Vs Final Submission (Presentation + Paper)
Final Project Proposal Vs Final Submission

- Introduction
- Related Work
- Approach/methodology
- Implementation
- **Project timeline**
- Evaluation/Results
- Discussion
- Conclusion
- Future Work

Proposal

Final Talk Slides
Final Paper

Note: No timeline in final paper
The Rest of the Class
The Rest of this class

- **Part 1: Course and Android Introduction**
 - Introduce mobile computing, ubiquitous Computing, Android,
 - Basics of Android programming, UI, Android Lifecycle

- **Part 2: Mobile and ubicomp Android programming**
 - mobile Android components (location, Google Places, maps, geofencing)
 - Ubicomp Android components (camera, face detection, activity recognition, etc)

- **Part 3: Mobile Computing/Ubicomp Research**
 - Machine learning (classification) in ubicomp
 - Ubicomp research (smartphone sensing examples, human mood detection, etc) using machine learning
 - Mobile computing research (app usage studies, energy consumption, etc)

Next!!
Smartphone Sensing
Smartphone Sensors

- Typical smartphone sensors today
 - accelerometer, compass, GPS, microphone, camera, proximity
- Use machine learning to classify sensor data

Future sensors?
- Heart rate monitor,
- Activity sensor,
- Pollution sensor,
- etc
Growth of Smartphone Sensors

- Every generation of smartphone has more and more sensors!!
Smartphone Sensing: What Can We Detect/Infer using These Sensors

24/7 detection, in natural settings

Smartphone Sensor data → Machine Learning →

- Eating/Drinking
- Stress, Mood
- Activity
- Mobility patterns

- Social interactions
 - Conversations

- Cardiac health
 - Sleep Quality

Image Credit: Deepak Ganesan, UMass
Sense What?

- **Environmental**: pollution, water levels in a creek
- **Transportation**: traffic conditions, road conditions, available parking
- **City infrastructure**: malfunctioning hydrants and traffic signs
- **Social**: photoblogging, share bike route quality, petrol price watch
- **Health and well-being**:
 - Share exercise data (amount, frequency, schedule),
 - share eating habits and pictures of food
Mobile CrowdSensing

- **Mobile CrowdSensing**: Sense collectively
- **Personal sensing**: phenomena for an individual
 - E.g.: activity detection and logging for health monitoring
- **Group**: friends, co-workers, neighborhood
 - E.g. GarbageWatch recycling reports, neighborhood surveillance
Mobile CrowdSensing

- **Community sensing (mobile crowdsensing):**
 - Large-scale phenomena monitoring
 - Many people contribute their individual readings
 - **Examples:** Traffic congestion, air pollution, spread of disease, migration pattern of birds, city noise maps
Mobile Crowd Sensing Types

- Many people cooperate, share sensed values
- 2 types:
 1. *Participatory Sensing*: User manually enters sensed values *(active involvement)*
 - E.g. Comparative shopping: Compare price of toothpaste at CVS vs Walmart
 2. *Opportunistic Sensing*: Mobile device automatically senses values *(passive involvement)*
 - E.g. Waze crowdsourced traffic
Smartphone Sensing Examples
Personal Sensing

- Personal monitoring
- Focusing on user's daily life, physical activity (*Khan et al.*)
- Basically like Fitbit on your phone
Other Examples of Personal Participatory Sensing

- AndWellness
 - “Personal data collection system”
 - Active user-triggered experiences and surveys
 - Passive recording using sensors

- UbiFit Garden
 - Uses smartphone sensors, real-time tracking, statistical modeling, and a personal, mobile display to encourage regular physical activity
Personal Opportunistic Sensing

- PerFallD
 - Detects if user falls using sensor
 - Starts a timer if it detects that someone fell
 - If individual does not stop timer before it ends, emergency contacts are called

User interfaces in PerFallD: (a) bright, large virtual buttons on operating screen (b) clear alert window (c) simple, non-confusing preference screen
Public Sensing

- Data is shared with everyone for public good
- Traffic
- Environmental
 - Noise levels
 - Air pollution
Public Participatory Sensing

- **LiveCompare**
 - User-created database of UPCs and prices
 - GPS and cell tower info used to find nearby stores

- **PetrolWatch**
 - Turns phone into fully automated dash-cam
 - Uses GPS to know when gas station is near
Public Participatory Sensing

- **Pothole Monitor**
 - Combines GPS and accelerometer

- **Party Thermometer**
 - Asks you questions about parties
 - Detects parties through GPS and microphone
Smartphone Sensing vs Dedicated Sensors
Background: Wireless Sensors for Environment Monitoring

- Embedded in room/environment
- Many sensors cooperate/communicate to perform task
- Monitors conditions (temperature, humidity, etc)
- User can query sensor (What is temp at sensor location?)
Sensing with Smartphones vs Dedicated Sensors

- **More resources**: Smartphones have much more processing and communication power.

- **Easy deployment**: Millions of smartphones already owned by people.
 - Instead of installing sensors in road, we detect traffic congestion using smartphones carried by drivers.
 - Makes maintenance easier. E.g. owner will charge their phone promptly.

- **Time-varying data**: population of mobile devices, type of sensor data, accuracy changes often due to user mobility and differences between smartphones.
Sensing with Smartphones vs Dedicated Sensors

- **Reuse of few general-purpose sensors:** While sensor networks use dedicated sensors, smartphones reuse relatively few sensors for wide-range of applications
 - E.g. Accelerometers used in transportation mode identification, pothole detection, human activity pattern recognition, etc

- **Human involvement:** humans who carry smartphones can be involved in data collection (e.g. taking pictures)
 - Human in the loop can collect complex data
 - Incentives must be given to humans
Smartphone Sensing Architecture
Smartphone Sensing Architecture

- Paradigm proposed by Lane et al

- **Sense:** Phones collect sensor data

- **Learn:** Information is extracted from sensor data by applying *machine learning and data mining* techniques

- **Inform, share and persuasion:** inform user of results, share with group/community or persuade them to change their behavior
 - **Inform:** Notify users of accidents (Waze)
 - **Share:** Notify friends of fitness goals (MyFitnessPal)
 - **Persuasion:** avoid speed traps (Waze)
References

1. **A Survey of Mobile Phone Sensing.** Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, Andrew T. Campbell, In IEEE Communications Magazine, September 2010