

Voice-Based/Speech Analytics

Voice Based Analytics

- Voice can be analyzed, lots of useful information extracted
 - Who is talking? (Speaker identification)
 - How many social interactions a person has a day
 - Emotion of person while speaking
 - Anxiety, depression, intoxication, of person, etc.
- For speech recognition, voice analytics used to:
 - Extract information useful for identifying linguistic content
 - Discard useless information (background noise, etc)

Mel Frequency Cepstral Coefficients (MFCCs)

- MFCCs widely used in speech and speaker recognition for representing envelope of power spectrum of voice
- Popular approach in Speech recognition
 - MFCC features + Hidden Markov Model (HMM) classifiers

MFCC Steps: Overview

- 1. Frame the signal into short frames.
- 2. For each frame calculate the periodogram estimate of the power spectrum.
- 3. Apply the mel filterbank to the power spectra, sum the energy in each filter.
- 4. Take the logarithm of all filterbank energies.
- 5. Take the DCT of the log filterbank energies.
- 6. Keep DCT coefficients 2-13, discard the rest.

MFCC Computation Pipeline

Step 1: Windowing

- Audio is continuously changing.
- Break into short segments (20-40 milliseconds)
- Can assume audio does not change in short window

Step 1: Windowing

- Essentially, break into smaller overlapping frames
- Need to select frame length (e.g. 25 ms), shift (e.g. 10 ms)

• So what? Can compare frames from reference vs test words (i.e. calculate distances between them)

http://slideplayer.com/slide/7674116/

Step 2: Calculate Power Spectrum of each Frame

- Cochlea (Part of human ear) vibrates at different parts depending on sound frequency
- Power spectrum Periodogram similarly identifies frequencies present in each frame

Background: Mel Scale

- Transforms speech attributes (frequency, tone, pitch) on non-linear scale based on human perception of voice
 - Result: non-linear amplification, MFCC features that mirror human perception
 - E.g. humans good at perceiving small change at low frequency than at high frequency

Step 3: Apply Mel FilterBank

Non-linear conversion from frequency to Mel Space

$$M(f) = 1125 \ln(1 + f/700) \tag{1}$$

Step 4: Apply Logarithm of Mel Filterbank

- Take log of filterbank energies at each frequency
- This step makes output mimic human hearing better
 - We don't hear loudness on a linear scale
 - Changes in loud noises may not sound different

Step 4: Apply Logarithm of Mel Filterbank

• Step 5: DCT of log filterbank:

- There are correlations between signals at different frequencies
- Discrete Cosine Transform (DCT) extracts most useful and independent features
- Final result: 39 element acoustic vector used in speech processing algorithms

Speech Classification

- Human speech can be broken into phonemes
- Example of phoneme is /k/ in the words (cat, school, skill)
- Speech recognition tries to recognize sequence of phonemes in a word
- Typically uses Hidden Markov Model (HMM)
 - Recognizes letters, then words, then sentences

Audio Project Ideas

- OpenAudio project, <u>http://www.openaudio.eu/</u>
- Many tools, dataset available
 - OpenSMILE: Tool for extracting audio features
 - Windowing
 - MFCC
 - Pitch
 - Statistical features, etc
 - Supports popular file formats (e.g. Weka)
 - OpenEAR: Toolkit for automatic speech emotion recognition
 - iHeaRu-EAT Database: 30 subjects recorded speaking while eating

Affect Detection

Definitions

• Affect

- Broad range of feelings
- Can be either emotions or moods

Emotion

- Brief, intense feelings (anger, fear, sadness, etc)
- Directed at someone or something
- Mood
 - Less intense, not directed at a specific stimulus
 - Lasts longer (hours or days)

Physiological Measurement of Emotion

- **Biological arousal:** heart rate, respiration, perspiration, temperature, muscle tension
- Expressions: facial expression, gesture, posture, voice intonation, breathing noise

Emotion	Physiological Response	
Anger	Increased heart rate, blood vessels bulge, constriction	
Fear	Pale, sweaty, clammy palms	
Sad	Tears, crying	
Disgust	Salivate, drool	
Happiness	Tightness in chest, goosebumps	

Affective State Detection from Facial + Head Movements

Image credit: Deepak Ganesan

Audio Features for Emotion Detection

- MFCC widely used for analysis of speech content, Automatic Speaker Recognition (ASR)
 - Who is speaking?
- Other audio features exist to capture sound characteristics (prosody)
 - Useful in detecting emotion in speech
- **Pitch:** the frequency of a sound wave. E.g.
 - Sudden increase in pitch => Anger
 - Low variance of pitch => Sadness

Audio Features for Emotion Detection

- Intensity: Energy of speech, intensity. E.g.
 - Angry speech: sharp rise in energy
 - Sad speech: low intensity

• Temporal features:

- Speech rate, voice activity (e.g. pauses)
- E.g. Sad speech: slower, more pauses
- Other emotion features: Voice quality, spectrogram, statistical measures

Gaussian Mixture Model (GMM)

- GMM used to classify audio features (e.g. depressed vs not depressed)
- General idea:
 - Plot subjects in a multi-dimensional feature space
 - Cluster points (e.g. depressed vs not depressed)
 - Fit to gaussian distribution (assumed)

MoodScope: Detecting Mood from Smartphone Usage Patterns (Likamwa *et al*)

- Define Mood based on Circumplex model in psychology
- Each mood defined on pleasure, activeness axes
 - Pleasure: how positive or negative one feels
 - Activeness: How likely one is to take action (e.g. active vs passive)

Figure 1: The circumplex mood model

Classification

 Moodscope: classifies user mood from smartphone usage patterns

Data type	Features
Email contacts	#messages #characters
SMS contacts	#messages #characters
Phone call contacts	#calls call duration
Website domains	#visits
Location clusters	#visits
Apps	#app launches app duration
Categories of apps	#app launches app duration

Mood

Smartphone usage features

MoodScope Study

- 32 Participants logged their moods periodically over 2 months
- Used mood journaling application
- Subjects: 25 in China, 7 in US, Ages 18-29

Figure 2: Mood journaling application view

MoodScope: Results

- Multi-linear regression
- 66% accuracy using general model (1 model for everyone)
- 93% accuracy, personalized model after 2 months of training
- Top features?
 - Communication
 - SMS
 - Email
 - Phone Calls
 - To whom?
 - # messages
 - Length/Duration
- Consider "Top 10" Histograms How many phone calls were made to #1? #2? ... #10? How much time was spent on calls to #1? #2? ... #10?

Uses of Affect Detection E.g. Using Voice on Smartphone

- Audio processing (especially to detect affect, mental health) can revolutionize healthcare
 - Detection of mental health issues automatically from patients voice
 - Population-level (e.g campus wide) mental health screening
 - Continuous, passive stress monitoring
 - Suggest breathing exercises, play relaxing music
 - Monitoring social interactions, recognize conversations (number and duration per day/week, etc)

Voice Analytics Example: SpeakerSense (Lu et al)

- Identifies speaker, who conversation is with
- Used GMM to classify pitch and MFCC features

Fig. 1. The SpeakerSense architecture.

Voice Analytics Example: StressSense (Lu et al)

- Detected stress in speaker's voice
- Features: MFCC, pitch, speaking rate
- Classification using GMM
- Accuracy: indoors (81%), outdoors (76%)

Voice Analytics Example: Mental Illness Diagnosis

- What if depressed patient lies to psychiatrist, says "I'm doing great"
- Mental health (e.g. depression) detectable from voice
- Doctors pay attention to speech aspects when examining patients

Category	Patterns
Rate of speech	slow, rapid
Flow of speech	hesitant, long pauses, stuttering
Intensity of speech	loud, soft
Clarity	clear, slurred
Liveliness	pressured, monotonous, explosive
Quality	verbose, scant

 E.g. depressed people have slower responses, more pauses, monotonic responses and poor articulation