Quantified Self
Quantified Self (QS)

- QS: Community of People who want to measure, log, share metrics about various aspects of their lives. E.g.
- **Defn:** Obtaining self-knowledge through self-tracking
- Also known as personal informatics or lifelogging
 - Sleep, daily step count, food consumed, air quality, mood, etc.
- Measurements typically done using wearables/technology
 - Activity trackers, pedometer, sleep tracker, calories burned, etc
 - Now more available, cheaper
QS: Why Track?

- Why track? To figure out causes of certain behaviors, improve health/wellness
 - E.g. Why do I feel tired on Friday afternoons?
- Data to back up your choices/decisions
 - Did that cup of coffee make you more productive?
- Discover new patterns that are fixable
 - Whenever I go to my mother’s house, I add at least 5 pounds on Monday morning
 - Am I happier when I meet more people or when I drink more coffee?

Courtesy Melanie Swan
QS: How Popular?

- 69% of US adults already track at least 1 health metric (Pew Research)
- Local meetings, conferences, website
 - quantifiedself.com/
QS: Google Search Trends

- Google Trends displays how often a term is searched
- “Quantified Self” Searches peaked ~ 2014
- Now more popular in Europe (Netherlands = 1, USA = 8)
QS Wellness Tracking Devices

Smart fork: eating/calories

Sleep manager

Bluetooth scale

Body worn activity trackers (steps, activities, calories)
Quantified Self Big Picture

1. Track

Physiological
- Eating
- Exercise
- Sleep
- Weight
- Blood pressure
- Heart rate
- Stress

+ Other Context
- Location
- Travel
- Calendar
- Email
- Lab results

2. Analyze

Analytics websites
- Bodytrack.org

Machine Learning
- Regression, classification, etc

3. Inform

Mobile App
- Hire Coach/Dr
 - Mymee.com (data-driven coaching)
Bodytrack Project
http://www.cmucreatelab.org/projects/BodyTrack

BodyTrack chest strap:
EKG, respiration, accelerometry;
stress, cough/sneeze, snoring

BodyTrack Indoor Environmental station:
Temp, humidity, barometric, sound levels, light levels;
Sleep hygiene, air quality (with external sensor), charger and data gateway for chest strap

Indoor air quality

Weight

Sleep logging

Actigraphy:
Activity and energy levels

Phone:
Pictures, GPS location, activity; food, events, self-reporting

Regional air quality:
Particulates, other pollutants, pollen, mold

Quantified Self
FluxStream QS Visualization

Fluxstream Unified QS Dashboard

Steps

2,116

Sleep

Activity

Finance

mffboston09

Community Meeting in East Boston from 1:00 until 2:30pm.

Household expenses 2011

October 28, 2013

Source: http://johnfass.wordpress.com/2012/09/06/bodytrackfluxstream/
QS: Other Personal Data Sources

- Social media: Facebook, Twitter, Foursquare
- Search engines: Google, Bing
- E-commerce sites: Amazon, Airline sites
- Entertainment/game sites: Netflix
- Email: Outlook, gmail, etc
The Future: Precision Medicine

- In future combine data from quantified self + medical data + genomics data = Precision medicine
Smartwatches + Wearables
Main Types of Wearables

- **Activity/Fitness Trackers:**
 - physiological sensing (activity, step count, sleep duration and quality, heart rate, heart rate variability, blood pressure, etc)
 - E.g. Fitbit Charge 2

- **Smartwatches**
 - Some activity/fitness tracking
 - Also programmable: notifications, receive calls, interact/control smartphone
 - E.g. Apple watch, Samsung Gear
How Popular are Smartwatches/Wearables?

Global Wearables Shipment Forecast, By Device

Millions

- Rest Of Wearables Market
- Fitness Bands And Other Activity Trackers
- Smartwatches

Source: IDC, BI Intelligence estimates
Wearables Example: Fitbit Charge 2

Fitbit Charge 2

Smartphone companion app (displays all variables tracked)
Example: Samsung Gear SmartWatch Uses

- 7:00 PM: After a long day, set your notifications to “Do Not Disturb”
- 6:00 PM: Mom sends an email list of things to buy at store
- 5:00 PM: Take dog out for walk and mom calls
- 4:30 PM: Take a walk and track steps home
- 4:00 PM: Listen to music on the way home
- 12:00 PM: Track steps to the gym
- 1:00 PM: Leave phone in your locker and go workout
- 2:00 PM: Send text to friend while working out
- 2:30 PM: Use turn by turn navigation to café
- 3:00 PM: Run for 30 minutes and 275 kcal
- 4:20 PM: Meet at 3 PM for lunch at new café
SmartPhone Vs Smartwatch

● Smartphone:
 ● More processing power, memory, sensors
 ● More programming APIs

● Smartphone Cons:
 ● Sometimes not carried (Left on table, in pocket, bag, briefcase, gym locker)
 ● Smartphone within arms reach, on person ~50% of the time (Anind Dey et al, Ubicomp 2011)
 ● Why? Sometimes inconvenient, impossible (e.g when swimming)
 ● Consequence: Missed activity (steps, activity, etc), incomplete activity picture

● Smartwatch:
 ● Lower processing power, memory, sensors, but
 ● Always carried
 ● Can sense physiological variables continuously, or require contact (e.g. skin temperature)
Programming Android Wearables

- Programmable using Android Wear (latest version is 2.0)
- Supported by Android Studio
- Needs to be connected to a smartphone (via Bluetooth)
- Architecture:
 - **Node API**: tracks all connected/disconnected nodes (E.g. wearables, smartwatches)
 - **Message API**: Used to send messages between wearable and smartphone
 - **Data API**: Used to synch data between app and smartwatch

A bit outdated, but nice overview for Android Wear for kitkat Android 4.4W
Android Wear Evolution

<table>
<thead>
<tr>
<th>Android Wear Version</th>
<th>Android Smartphone Version</th>
<th>Release Date</th>
<th>Major New Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4W1</td>
<td>4.4</td>
<td>June 2014</td>
<td>Initial release at Google I/O 2014</td>
</tr>
<tr>
<td>4.4W2</td>
<td>4.4</td>
<td>Oct 2014</td>
<td>GPS support, music playback</td>
</tr>
<tr>
<td>1.0</td>
<td>5.0.1</td>
<td>Dec 2014</td>
<td>Watch face API (face design), Sunlight & theater modes, battery stats</td>
</tr>
<tr>
<td>1.1</td>
<td>5.1.1</td>
<td>May 2015</td>
<td>WiFi, Drawable Emojis, Pattern Lock, swipe left, wrist gestures</td>
</tr>
<tr>
<td>1.3</td>
<td>5.1.1</td>
<td>Aug 2015</td>
<td>Interactive Watch Face, Google Translate</td>
</tr>
<tr>
<td>1.4</td>
<td>6.0.1</td>
<td>Feb 2016</td>
<td>Speaker support, send voice messages</td>
</tr>
<tr>
<td>1.5</td>
<td>6.0.1</td>
<td>June 2016</td>
<td>Restart watch, Android security patch</td>
</tr>
<tr>
<td>2.0</td>
<td>7.1.1</td>
<td>Feb 2017</td>
<td>UI revamp (material design, circular faces), watch keyboard, handwriting recognition, cellular support</td>
</tr>
</tbody>
</table>
Physiological Sensing
Wearables for Physiological Sensing

- Some wearables measure more physiological signals
 - Cardiac rhythms (heartbeat), breathing, sweating, brain waves, gestures, muscular contractions, eye movements, etc
- Basis Health tracker: heart rate, skin temperature, sleep
- Microsoft Band 2: Heart rate, UltraViolet radiation, Skin conductance
Empatica E4 WristBand

- Wristband measures physiological signals real time (PPG, EDA, accelerometer, infra-red temperature reader)
Myo Armband

- Measures muscle contraction (electromyography or EMG), to detect gestures
Electrocardiogram (ECG)

- ECG (or EKG): recording of electrical activity of the heart
- Each heartbeat causes electrical signal to spread from top to bottom of heart
- Electric Signal
 - is rhythmic, causes heart to contract and pump blood
 - Can be measured electric activity between 2 electrodes placed on chest
Electrocardiogram (ECG)

- ECG shows:
 - How fast the heart is beating
 - Rhythm of heartbeat (steady vs irregular)
 - Strength and timing of electrical signals

- Arrhythmia: fast or irregular heartbeat, can cause stroke or heart failure
Electrocardiogram (ECG)

- ECG waveform comprises sequence of peaks and trough (P,Q,R,S,T), which repeats
 - Occasionally a U wave after T
ECG Features for Classification

- From a waveform with at least 5 peaks, can extract as features for classification, the following timing intervals:
 - RR interval
 - PR interval
 - QRS interval
 - QT interval, etc.

- Heart rate is the number of RR intervals/min:
 \[\text{Heart rate} = \frac{60}{\text{RR}} \]

- Note: RR is in seconds.
Trends: Mobile ECG

- E.g. AliveCor kardia ECG
 - Hold 2 fingers on metal plates (ECG recorder) for at least 30 seconds
Photoplethysmography (PPG)

- **PPG**: Non-invasive technique for measuring blood volumes in blood vessels close to skin
- Now popular non-invasive method of extracting physiological measurements e.g. heart rate or oxygen saturation
- Traditional device for PPG is pulse oximeter
 - Measures concentration of oxygen in the blood
 - Low oxygen levels (< 80%) can compromise organs, lead to heart attack, etc

Pulse Oximeter
Pulse Oximeter PPG

- Amount of oxygen in the blood determines how much infrared light absorbed, scattered, passes through (from IR to photodiode)

Image credit: Deepak Ganesan
Smartphone/Smartwatch PPG: Estimating HR

- **Principle:**
 - Blood absorbs green light
 - LED shines green light unto skin (back of wrist)
 - Blood pumping changes blood flow and hence absorption rhythmically
 - Photodiode measures rhythmic changes in green light absorption => HR

![Image credit: Deepak Ganesan](image-url)
Smartphone PPG: Heart Rate Detection

- Like smartwatch, use camera flash (emitter), camera as detector
- Place finger over smartphone’s camera, shine light unto finger tip
- Heart pumps blood in and out of blood vessels on finger tip
 - Changes how much light is absorbed (especially green channel in RGB)
 - Causes rhythmic changes of reflected light
Smartphone PPG: Heart Rate Detection

Idea:
- Color expressed as (R G B)
- Track intensity of Green channel of Camera response
- Use peak finding algorithm (similar to step counter)
- Time between peak is 1 cycle
- Heart rate = cycles per minute = 60 / time for 1 cycles

Can also extract breathing rate, heart rate variability
PPG: Final Words

- PPG (or similar ideas) have been attempted:
 - on other body parts (ear lobes, face)
 - from video frames (detect, magnify small changes in facial color 100x)
 - Using other ubiquitous devices (e.g. Medical Mirror, Poh et al)

MZ Poh, D McDuff, R Picard A medical mirror for non-contact health monitoring, ACM SIGGRAPH 2011 Emergin
Electrodermal Activity (EDA)

- When people experience emotional arousal (e.g. danger), stress, cognitive load or physical exertion => increased sweating
- Increased sweating changes electrical conductance of skin
- Sometimes called Galvanic Skin Response (GSR)
- This response cannot be controlled by person
 - Hence, widely used in emotion/lie detection
EDA Features

- Features useful for classifying measured human EDA response
 - **Latency**: time between stimulus and response
 - **Rise time**: time for skin conductance to peak
 - **Amplitude**: Height of conductance signal
 - **Half recovery time**: Time for conductance signal to lose half of its peak value

Figure 5. Graphical representation of principal EDA components.
References

- Deepak Ganesan, Behavioral Health Sensing, Course Notes Fall 2015
- Melania Swan, The Quantified Self: Fundamental Disruption in Big Data Science and Biological Discovery,
- BBC, Quantified Self – The Tech-based Route to Better Life
- NY Times, The Data-Driven Life
- The Ultimate Guide to The Quantified Self
 http://www.slideshare.net/ramykhuffash/the-ultimate-guide-to-the-quantified-self