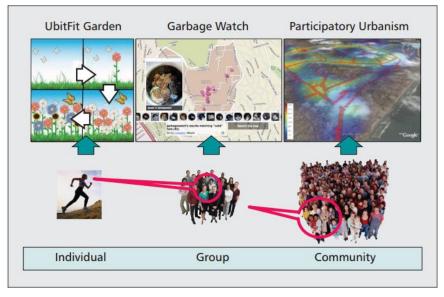
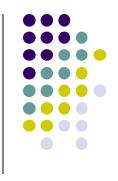


Smartphone Sensors

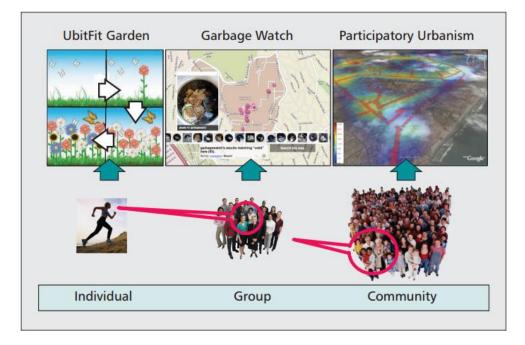
- Typical smartphone sensors today
 - accelerometer, compass, GPS, microphone, camera, proximity
- Use machine learning to classify sensor data


Future sensors?


- Heart rate monitor,
- Activity sensor,
- Pollution sensor,
- etc

Mobile CrowdSensing

- Mobile CrowdSensing: Sense collectively
- Personal sensing: phenomena pertain to individual
 - E.g: activity detection and logging for health monitoring
- Group: friends, co-workers, neighborhood
 - E.g. GarbageWatch recycling reports, neighborhood surveillance



Mobile CrowdSensing

• Community sensing (mobile crowdsensing):

- Large-scale phenomena monitoring
- Many people contribute their individual readings
- Examples: Traffic congestion, air pollution, spread of disease, migration pattern of birds, city noise maps

Mobile Crowd Sensing Types

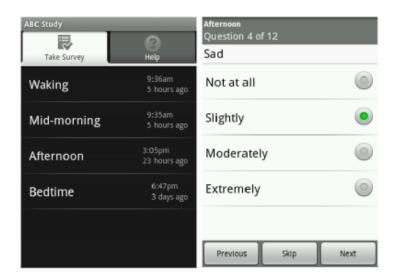
- Many people cooperate, share sensed values
- 2 types:
 - 1. Participatory Sensing: User enters sensed values (active involvement)
 - E.g. Comparative shopping: Compare price of toothpaste at CVS vs Walmart
 - Opportunistic Sensing: Mobile device automatically senses values (passive involvement)
 - E.g. Waze crowdsourced traffic

Sense What?

- Environmental: pollution, water levels in a creek
- **Transportation:** traffic conditions, road conditions, available parking
- **City infrastructure:** malfunctioning hydrants and traffic signs
- Social: photoblogging, share bike route quality, petrol price watch
- Health and well-being:
 - Share exercise data (amount, frequency, schedule),
 - share eating habits and pictures of food

Smartphone Sensing Examples

Personal Sensing

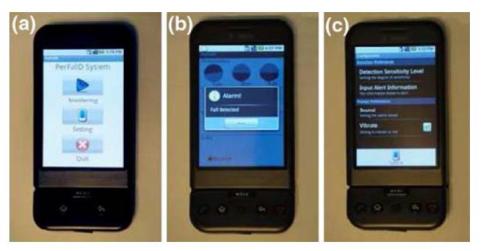

- Personal monitoring
- Focusing on user's daily life, physical activity (Khan et al. 404)

AT NO WAY ----

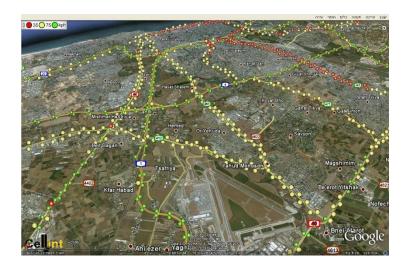
Other Examples of Personal Participatory Sensing

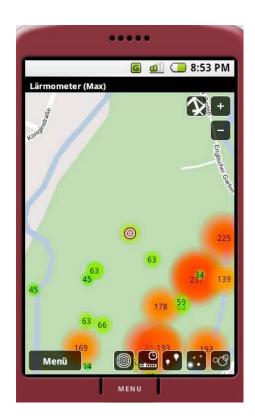
AndWellness

- "Personal data collection system"
- Active user-triggered experiences and surveys
- Passive recording using sensors
- UbiFit Garden
 - Uses smartphone sensors, real-time statistical modeling, and a personal, mobile display to encourage regular physical activity



Personal Opportunistic Sensing

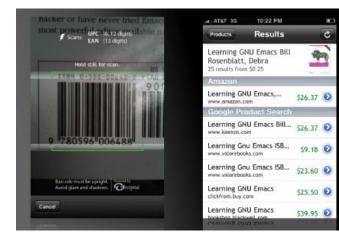

- PerFalld
 - How It Works
 - Detects if someone falls using sensor
 - Starts a timer if it detects that someone fell
 - If individual does not stop timer before it ends, emergency contacts are called



User interfaces in PerFallD: (a) bright, large virtual buttons on operating screen (b) clear alert window (c) simple, non-confusing preference screen

Public Sensing

- Data is shared with everyone for public good
- Traffic
- Environmental
 - Noise levels
 - Air pollution



Public Participatory Sensing

LiveCompare

- User-created database of UPCs and prices
- GPS and cell tower info used to find nearby stores
- PetrolWatch
 - Turns phone into fully automated dash-cam
 - Uses GPS to know when gas station is near

Public Participatory Sensing

• Pothole Monitor

• Combines GPS and accelerometer

• Party Thermometer

• Asks you questions about parties

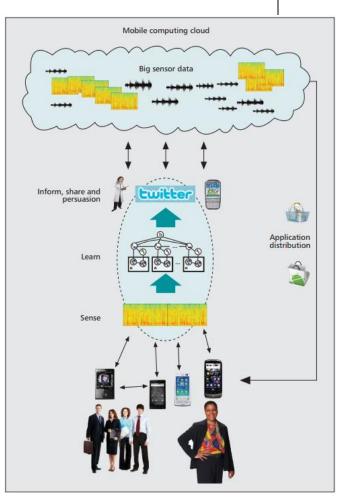
• Detects parties through GPS and microphone

Sensing with Smartphones vs Dedicated Sensors

- More resources: Smartphones have much more processing and communication power
- **Easy deployment:** Millions of smartphones already owned by people
 - Instead of installing sensors in road, we detect traffic congestion using smartphones carried by drivers
- Time-varying data: population of mobile devices, type of sensor data, accuracy changes often due to user mobility and differences between smartphones

Smartphone Sensing vs Dedicated Sensors

Sensing with Smartphones vs Dedicated Sensors


- Reuse of few general-purpose sensors: While sensor networks use dedicated sensors, smartphones reuse relatively few sensors for widerange of applications
 - E.g. Accelerometers used in transportation mode identification, pothole detection, human activity pattern recognition, etc
- Human involvement: humans who carry smartphones can be involved in data collection (e.g. taking pictures)
 - Human in the loop can collect complex data
 - Incentives must be given to humans

Smartphone Sensing Architecture

Smartphone Sensing Architecture

- Paradigm proposed by Lane *et al*
- Sense: Phones collect sensor data
- Learn: Information is extracted from sensor data by applying machine learning and data mining techniques
- Inform, share and persuasion: inform user of results, share with group/community or persuade them to change their behavior
 - Inform: Notify users of accidents (Waze)
 - Share: Notify friends of fitness goals (MyFitnessPal)
 - **Persuasion:** avoid speed traps (Waze)

Final Project Proposal

Final Project Proposal

- While working on projects 3 & 4, also brainstorm on final project
- Nov 2, Propose mobile/ubicomp app, solves WPI problem or Machine learning
- Proposals should include:
 - 1. Problem you intend to work on
 - Solve WPI/societal problem (e.g. walking safe at night)
 - Use at least 3 mobile/ubicomp components (e.g. location, sensor or camera)
 - If games, must gamify solution to real world problem

2. Why this problem is important

- E.g. 37% of WPI students feel unsafe walking home
- Related Work: What prior solutions have been proposed for this problem

4. Summary of envisioned mobile app (?) solution

1. E.g. Mobile app automatically texts users friends when they get home at night

Final Project Proposal

- Can also do Machine learning project that classifies/detects analyzes a dataset of builds a real-time app to classify some human sensor data. E.g. Classifies
 - A speaker's voice to determine if nervous, sad, etc
 - A user's accelerometer data and recognizes their walk from 5-10 other people
 - A picture of a person's face and determines their mood
 - Data from a person's phone to measure their sleep duration or/and quality
 - Video of a person's face to detects their heart rate
 - A person's communication/phone usage patterns to detect their mood
- Also propose evaluation plan
 - E.g. Small user study to evaluate app
 - Machine learning performance metrics (e.g. classification accuracy, cross validation, etc)
- Can bounce ideas of me (email, or in person)
- Can change idea any time

Rubric: Grading Considerations

• Problem (10/100)

- How much is the problem a real problem (e.g. not contrived)
- Is this really a good problem that is a good fit to solve with mobile/ubiquitous computing? (e.g. are there better approaches?)
- How useful would it be if this problem is solved?
- What is the potential impact on the community (e.g. WPI students) (e.g. how much money? Time? Productivity.. Would be saved?)
- What is the evidence of the importance? (E.g. quote a statistic)

Related Work (10/100)

- What else as been done to solve this problem previously
- Proposed Solution/Classification (10/100)
 - How good/clever/interesting is the solution?
 - How sophisticated and how many are the mobile/ubiquitous computing components (high level) proposed? (e.g. location, geofencing, activity recognition, face recognition, machine learning, etc)

Rubric: Grading Considerations

- Implementation Plan + Timeline (10/100)
 - Clear plans to realize your design/methodology
 - Android modules/3rd party software used
 - Software architecture,
 - Screenshots (or sketches of UI), or study design + timeline

Evaluation Plan (10/100)

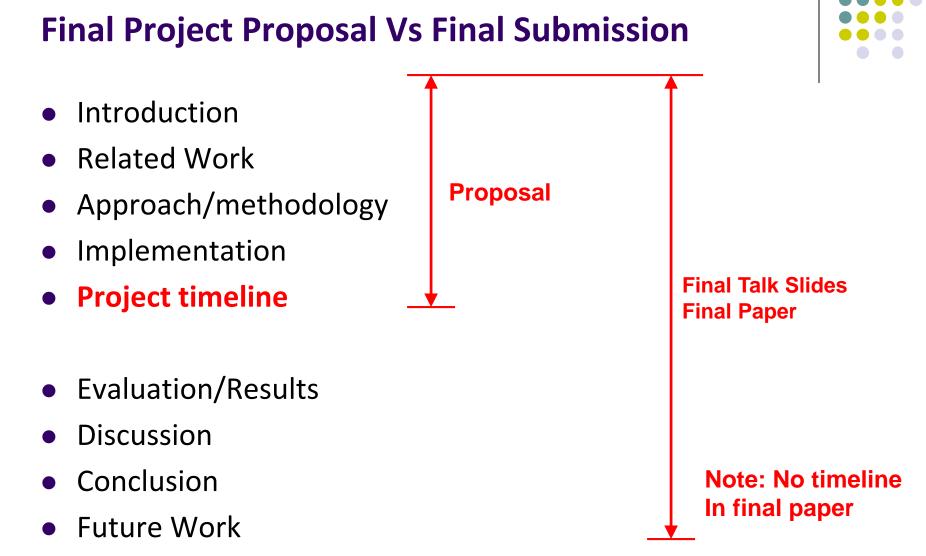
- How will you evaluate your project.
- E.g. small user studies for apps
- Machine learning cross validation, etc
- 50 more points allotted for your slides + presentation

The Rest of the Class

The Rest of this class

• Part 1: Course and Android Introduction

- Introduce mobile computing, ubiquitous Computing, Android,
- Basics of Android programming, UI, Android Lifecycle
- Part 2: Mobile and ubicomp Android programming
 - mobile Android components (location, Google Places, maps, geofencing)
 - Ubicomp Android components (camera, face detection, activity recognition, etc)


• Part 3: Mobile Computing/Ubicomp Research

- Machine learning (classification) in ubicomp
- Ubicomp research (smartphone sensing examples, human mood detection, etc) using machine learning
- Mobile computing research (app usage studies, energy consumption, etc)

Final Project: Proposal Vs Final Submission

References

- A Survey of Mobile Phone Sensing. Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, Andrew T. Campbell, In IEEE Communications Magazine, September 2010
- Mobile Phone Sensing Systems: A Survey, Khan, W.; Xiang, Y.; Aalsalem, M.; Arshad, Q.; , Communications Surveys & Tutorials, IEEE , vol.PP, no.99, pp.1-26