
CS 528 Mobile and Ubiquitous
Computing

Lecture 6b: Step Counting & Activity
Recognition

Emmanuel Agu

Step Counting
(How Step Counting Works)

Sedentary Lifestyle

 Sedentary lifestyle
 increases risk of diabetes, heart disease, dying earlier, etc

 Kills more than smoking!!

 Categorization of sedentary lifestyle based on step count by paper:
 “Catrine Tudor-Locke, Cora L. Craig, John P. Thyfault, and John C. Spence, A step-defined

sedentary lifestyle index: < 5000 steps/day”, Appl. Physiol. Nutr. Metab. 38: 100–114 (2013)

Step Count Mania

 Everyone is crazy about step count these days

 Pedometer apps, pedometers, fitness trackers, etc

 Tracking makes user aware of activity levels, motivates them to exercise more

How does a Pedometer Detect/Count Steps
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 As example of processing Accelerometer data

 Walking or running results in motion along the 3 body axes
(forward, vertical, side)

 Smartphone has similar axes
 Alignment depends on phone orientation

The Nature of Walking
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Vertical and forward acceleration increases/decreases during different
phases of walking

 Walking causes a large periodic spike in one of the accelerometer axes

 Which axes (x, y or z) and magnitude depends on phone orientation

Step Detection Algorithm
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Step 1: smoothing
 Signal looks choppy

 Smooth by replacing each sample with average of current, prior and next sample (Window of 3)

 Step 2: Dynamic Threshold Detection
 Focus on accelerometer axis with largest peak

 Would like a threshold such that each crossing is a step

 But cannot assume fixed threshold (magnitude depends on phone orientation)

 Track min, max values observed every 50 samples

 Compute dynamic threshold: (Max + Min)/2

Step Detection Algorithm
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 A step is
 indicated by crossings of dynamic threshold

 Defined as negative slope (sample_new < sample_old) when smoothed waveform
crosses dynamic threshold

Steps

Step Detection Algorithms
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Problem: vibrations (e.g. mowing lawn, plane taking off) could be counted as a
step

 Optimization: Fix by exploiting periodicity of walking/running

 Assume people can:
 Run 5 steps per second => 0.2 seconds per step

 Walk 1 step every 2 seconds => 2 seconds per step

 So, can eliminate “negative crossings” that occur outside period [0.2 – 2 seconds]

Step Detection Algorithms
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Previous step detection algorithm is simple.

 More sophisticated algorithms exist

 Smoothing: Time domain filtering

 Exponential smoothing: Weight more recent samples higher

 Median filtering + Exponential smoothing

 Frequency domain processing:
 Fourier transform, operations in frequency domain

 Keep frequencies of typical walking, and remove rest

 Typical walking pace: 2-3Hz (remove freq > 5Hz)

Counting Calories
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 First, calculate distance covered based on number of steps taken

Distance = number of steps × distance per step (1)

 Distance per step (stride) depends on user’s height (taller people, longer strides)

 Number of steps taken per 2 seconds gives estimate of person’s stride length

Counting Calories
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 To estimate speed, remember that speed = distance/time. Thus,

Speed = steps per 2 s × stride/2 s (2)

 Many factors affect calorie expenditure. E.g
 Body weight, workout intensity, fitness level, etc

 Rough relationship given in table

 Expressed as an equation

 Converting from speed in km/h to m/s
Calories (C/kg/h) = 1.25 × speed (m/s) × 3600/1000 = 4.5 × speed (m/s) (4)

Calories (C/kg/h) = 1.25 × running speed (km/h) (3)

Introduction to Activity
Recognition

Activity Recognition

 Goal: Want our app to detect what activity the user is doing?

 Classification task: which of these 6 activities is user doing?
 Walking,

 Jogging,

 Ascending stairs,

 Descending stairs,

 Sitting,

 Standing

 Typically, use machine learning classifers to classify user’s
accelerometer signals

Activity Recognition Overview

Machine

Learning

Classifier

Walking

Running

Climbing Stairs

Gather Accelerometer data

Classify

Accelerometer

data

Example Accelerometer Data for Activities

Example Accelerometer Data for Activities

Activity Recognition
Using Google API

Activity Recognition

 Activity Recognition? Detect what user is doing?
 Part of user’s context

 Examples: sitting, running, driving, walking

 Why? App can adapt it’s behavior based on user behavior

 E.g. If user is driving, don’t send notifications

https://www.youtube.com/watch?v=S8sugXgUVEI

https://www.youtube.com/watch?v=S8sugXgUVEI
https://www.youtube.com/watch?v=S8sugXgUVEI

Google Activity Recognition API

 API to detect smartphone user’s current activity

 Programmable, can be used by your Android app

 Currently detects 6 states:
 In vehicle

 On Bicycle

 On Foot

 Still

 Tilting

 Unknown

Google Activity Recognition API

 Deployed as part of Google Play Services

Machine Learning

Classifiers

Activity Recognition API

Google Play Services

Your Android App

Activity Recognition Using AR API
Ref: How to Recognize User Activity with Activity Recognition by Paul Trebilcox-Ruiz on
Tutsplus.com tutorials

 Example code for this tutorial on gitHub:
https://github.com/tutsplus/Android-ActivityRecognition

 Google Activity Recognition can:
 Recognize user’s current activity (Running, walking, in a vehicle or still)

 Project Setup:
 Create Android Studio project with blank Activity (minimum SDK 14)

 In build.gradle file, define latest Google Play services (was 8.4 last year, now
11.5.9) as dependency

Activity Recognition Using AR API
Ref: How to Recognize User Activity with Activity Recognition by Paul
Trebilcox-Ruiz on Tutsplus.com tutorials

 Create new class ActivityRecognizedService which extends IntentService

 IntentService: type of service, asynchronously handles work off main thread as
Intent requests.

 Throughout user’s day, Activity Recognition API sends user’s activity to this
IntentService in the background

 Need to program this Intent to handle incoming user activity

Called by Android OS

to deliver

User’s activity

Activity Recognition Using AR API
Ref: How to Recognize User Activity with Activity Recognition by Paul
Trebilcox-Ruiz on Tutsplus.com tutorials

 Modify AndroidManifest.xml to
 Declare ActivityRecognizedService

 Add com.google.android.gms.permission.ACTIVITY_RECOGNITION permission

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.tutsplus.activityrecognition">

<uses-permission android:name="com.google.android.gms.permission.ACTIVITY_RECOGNITION" />

<application

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme">

<activity android:name=".MainActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<service android:name=".ActivityRecognizedService" />

</application>

</manifest>

http://schemas.android.com/apk/res/android

Requesting Activity Recognition

 In MainActivity.java, To connect to Google Play Services:
 Provide GoogleApiClient variable type + implement callbacks

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

public class MainActivity extends AppCompatActivity implements GoogleApiClient.ConnectionCallbacks,

GoogleApiClient.OnConnectionFailedListener {

public GoogleApiClient mApiClient;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

}

@Override

public void onConnected(@Nullable Bundle bundle) {

}

@Override

public void onConnectionSuspended(int i) {

}

@Override

public void onConnectionFailed(@NonNull ConnectionResult connectionResult) {

}

}

Handle to Google Activity

Recognition client

Called if Google Play connection fails

Called if sensor (accelerometer)

connection fails

Normal AR call if everything

working well

Requesting Activity Recognition
 In onCreate, initialize client and connect to Google Play Services

Request ActivityRecognition.API

Associate listeners with

our instance of

GoogleApiClient

Requesting Activity Recognition
 Once GoogleApiClient has connected, onConnected() is called

 Need to create a PendingIntent that goes to our IntentService

 Also set how often API should check user’s activity in milliseconds

1

2

3

4

5

6

@Override

public void onConnected(@Nullable Bundle bundle) {

Intent intent = new Intent(this, ActivityRecognizedService.class);

PendingIntent pendingIntent = PendingIntent.getService(this, 0, intent, PendingIntent.FLAG_UPDATE_CURRENT);

ActivityRecognition.ActivityRecognitionApi.requestActivityUpdates(mApiClient, 3000, pendingIntent);

}

Build intent to send to IntentService

How often to check user’s activity

(in milliseconds)

Handling Activity Recognition
 Our app tries to recognize the user’s activity every 3 seconds

 onHandleIntent called every 3 seconds, Intent delivered

 In onHandleIntent() method of ActivityRecognizedService

 Extract ActivityRecognitionResult from the Intent

 Retrieve list of possible activities by calling getProbableActivities() on
ActivityRecognitionResult object

1

2

3

4

5

6

7

@Override

protected void onHandleIntent(Intent intent) {

if(ActivityRecognitionResult.hasResult(intent)) {

ActivityRecognitionResult result = ActivityRecognitionResult.extractResult(intent);

handleDetectedActivities(result.getProbableActivities());

}

}

Called to deliver user’s

activity as an Intent

Extract Activity Recognition

object from IntentGet list of probable

activities

Handling Activity Recognition
 Simply log each detected activity and display how confident Google

Play services is that user is performing this activity

private void handleDetectedActivities(List<DetectedActivity> probableActivities) {

for(DetectedActivity activity : probableActivities) {

switch(activity.getType()) {

case DetectedActivity.IN_VEHICLE: {

Log.e("ActivityRecogition", "In Vehicle: " + activity.getConfidence());

break;

}

case DetectedActivity.ON_BICYCLE: {

Log.e("ActivityRecogition", "On Bicycle: " + activity.getConfidence());

break;

}

case DetectedActivity.ON_FOOT: {

Log.e("ActivityRecogition", "On Foot: " + activity.getConfidence());

break;

}

case DetectedActivity.RUNNING: {

Log.e("ActivityRecogition", "Running: " + activity.getConfidence());

break;

}

case DetectedActivity.STILL: {

Log.e("ActivityRecogition", "Still: " + activity.getConfidence());

break;

}

case DetectedActivity.TILTING: {

Log.e("ActivityRecogition", "Tilting: " + activity.getConfidence());

break;

}

Sample output

Switch statement on

activity type

Handling Activity Recognition

 If confidence is > 75, activity detection is probably accurate

 If user is walking, ask “Are you walking?”

case DetectedActivity.WALKING: {

Log.e("ActivityRecogition", "Walking: " + activity.getConfidence());

if(activity.getConfidence() >= 75) {

NotificationCompat.Builder builder = new NotificationCompat.Builder(this);

builder.setContentText("Are you walking?");

builder.setSmallIcon(R.mipmap.ic_launcher);

builder.setContentTitle(getString(R.string.app_name));

NotificationManagerCompat.from(this).notify(0, builder.build());

}

break;

}

case DetectedActivity.UNKNOWN: {

Log.e("ActivityRecogition", "Unknown: " + activity.getConfidence());

break;

}

}

}

}

 Sample displayed on development console

 Full code at: https://github.com/tutsplus/Android-ActivityRecognition

Sample Output of Program

Android Awareness API

Awareness API
https://developers.google.com/awareness/overview

 Single Android API for context awareness released in 2016

 Combines some APIs already covered (Place, Activity, Location)

Quiz 3

Quiz 3

 Quiz in class next Thursday (before class Oct 12)

 Short answer questions

 Try to focus on understanding, not memorization

 Covers:
 Lecture slides for lectures 5a,5b,6a,6b

 1 code example from book

 HFAD examples: Odometer (Distance Travelled), Ch 13. pg 541

References

 Head First Android

 Android Nerd Ranch, 2nd edition

 Busy Coder’s guide to Android version 6.3

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

