Advanced Computer Graphics
CS 525M: Visage: A Face Interpretation Engine for Smartphone Applications

Zahid Mian

Computer Science Dept.
Worcester Polytechnic Institute (WPI)
Problem/Motivation

● Camera as Another Sensor
● Use Mobile Devices to ...
 ● Position of head
 ● detect/analyze facial expressions
● Ultimately Build “smart” Apps that ...
 ● Use this information to provide an integrated experience
 ● Provide Feedback to User
 ● Others
Related Work

- Face Detection Mostly Limited to Desktop
 - Doesn’t take into account environment/context
- SenseCam
 - Simply takes pictures of everyday life (no processing)
- MoVi
 - Send Images to server and mine for common interests
- Google Goggles (Glass Project)
 - Mostly Server Side Processing
Limited Phone Resources

- Key Considerations:
 - Image Data Larger Compared to Other Sensors
 - Offloading Data a Transmission/Privacy Concerns

- Process Realtime, but
 - Downsampling images (192x144)
 - Larger Window Size for Sampling
 - Skip frames, if necessary
 - High CPU Usage
Visage System Architecture

- Sensing Stage
 - Camera
 - Motion sensor

- Preprocessing Stage
 - Adaptive exposure
 - Face detection
 - Phone posture

- Tracking Stage
 - Feature points tracking

- Inference Stage
 - AAM face fitting
 - Pose inference
 - Expression classification
Preprocessing Stage

- **Phone Posture Component**
 - Identifies frames that contain user’s face
 - Uses accelerometer/gyroscope data to determine gravity direction (phone’s motion intensity)

- **Face Detection with Tilt Compensation**
 - AdaBoost Object detector (scan until face identified)
 - Visage compensates for phone’s tilt

- **Adaptive Exposure Component**
 - Correct camera exposure level
Detection Time and Window Size

The graph shows the relationship between the minimum detection window size and the processing time (ms). The graph indicates that a window size of 128 x 128 results in a processing time of 80 ms.
Example of Adaptive Exposure
Tracking Stage

- **Feature Points Tracking Component**
 - Landmarks on face (eye corners, edges of mouth)
 - Lucas-Kanade method to track movement
 - CAMSHIFT allows for larger motion

- **Pose Estimation Component (POSIT)**
 - Pose from Orthography and Scaling with Iterations
 - Estimate 3D pose of user’s head
 - Use cylinder as a baseline for head
 - x,y from 2D image; z from shape of cylinder
 - Determine rotation of cylinder
 - Use Calibration to compensate for modeling errors
Example Lucas-Kanade method

We want to track down her nose from here...

We track at first on a 2x scaled picture...
Examples of Pose Estimation
Inference Stage

- **Active Appearance Models**
 - Statistical method
 - Require training images (fitting process)
 - Triangular mesh, landmark points
 - Capture pixel color intensities

- **Expression Classification**
 - Anger, Disgust, Fear, Happy, Neutral, Sadness, Surprise
 - Fisherface technique for classification
Implementation

- Apple iPhone 4
- Objective C (GUI)
- Core Processing in C
- OpenCV (Visage pipelines)
Performance Benchmarks

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Avg. CPU usage</th>
<th>Avg. memory usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUI only</td>
<td>< 1%</td>
<td>3.18MB</td>
</tr>
<tr>
<td>Pose estimation</td>
<td>58%</td>
<td>6.07MB</td>
</tr>
<tr>
<td>Expression inference</td>
<td>29%</td>
<td>4.57MB</td>
</tr>
<tr>
<td>Pose estimation & expression inference</td>
<td>68%</td>
<td>6.28MB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Average processing time(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face detection</td>
<td>53</td>
</tr>
<tr>
<td>Feature points tracking</td>
<td>32</td>
</tr>
<tr>
<td>AAM fitting</td>
<td>92</td>
</tr>
<tr>
<td>Facial expression classification</td>
<td>3</td>
</tr>
</tbody>
</table>
Tilted Face Detection

- Red-Colored Box indicates Detection
- Top Row: Default AdaBoost algorithm
- Bottom Row: Tilt Compensation (much better)
 - -90 ~ 90 degrees (range)
Phone Motion and Head Pose Estimation Errors

(a) Without motion-based reinitialization

(b) With motion-based reinitialization
Accuracy of Head Pose Estimation

- 1-Meter Radius
- Several evenly spaced markers
- Volunteers asked to move head towards marker

• Calibrated pose is close to ground truth
Facial Expression Confusion Matrix

<table>
<thead>
<tr>
<th>Expressions</th>
<th>Anger</th>
<th>Disgust</th>
<th>Fear</th>
<th>Happy</th>
<th>Neutral</th>
<th>Sadness</th>
<th>Surprise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anger</td>
<td>93.33</td>
<td>6.67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Disgust</td>
<td>6.90</td>
<td>75.86</td>
<td>17.24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fear</td>
<td>0</td>
<td>7.41</td>
<td>92.54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.23</td>
</tr>
<tr>
<td>Happy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>87.10</td>
<td>6.45</td>
<td>3.23</td>
<td>0</td>
</tr>
<tr>
<td>Neutral</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90.00</td>
<td>10.00</td>
<td>0</td>
</tr>
<tr>
<td>Sadness</td>
<td>0</td>
<td>6.45</td>
<td>9.68</td>
<td>3.23</td>
<td>9.68</td>
<td>70.97</td>
<td>0</td>
</tr>
<tr>
<td>Surprise</td>
<td>0</td>
<td>0</td>
<td>3.33</td>
<td>3.33</td>
<td>0</td>
<td>0</td>
<td>93.33</td>
</tr>
</tbody>
</table>
Using Head Rotation – Streetview+

Streetview+ (based on Google Streetview) application automatically changes the view based on the rotation of head.
Using Facial Expression – Mood Profiler

(a) YouTube

(b) Email

Shows a user’s expression while (a) watching YouTube and (b) reading email – depends on accuracy of facial classification
Conclusion

- Using Phone’s Camera As a Sensor
- Possible to do Facial Recognition in Realtime
- Compensate for Contextual Factors
- Experiment Results show robustness
- Use Camera to Build Integrated Apps
 - Head motion can be used in Apps like Streetview
 - Facial expressions can be used ...
 - Provide feedback
 - Or even change mood (not in paper)
Critique/Thoughts ...

- The Good ...
 - Use of camera as a sensor
 - Myriad of experiments show robustness
 - Great Potential ...
 - Play “happy” music if anger is detected
 - Notify friends if sadness detected

- The Not so Good ...
 - Applications/Examples aren’t practical
 - Little discussion on Battery Usage
 - No experiments different skin tones
References

- http://copterix.perso.rezel.net/?page_id=58
- http://www.aforgenet.com/articles/posit/