Ubiquitous and Mobile Computing CS 525M: Fast App Launching for Mobile Devices Using Predictive User Context

XIAOCHEN HUANG

Computer Science Dept. Worcester Polytechnic Institute (WPI)

AUTHORS

Tingxin Yan

David Chu

Deepak Ganesan

Aman Kansal

Jie Liu

University of Massachusetts Amherst, Microsoft Research {yan, gamesman}@cs.umass.edu, {davidchu, kansal, jie.liu}@microsoft.com

Mobile Apps ... Loading Slowly

Measured on Sansung Focus Windows Phone

Slow network Content Fetching

Measured on iPhone 3GS

Two approaches ...

Cache apps in memory	Push notification
Decrease launch time	Address stale content
 Demand large amounts of memory, overwhelming memory real estate for other apps Content may become stale by the time the user interacts with the app 	 The energy cost of push communication can be prohibitively high

FALCON

• What is Prelaunch?

Prelaunch: Schedule an app to run before the user launches it

BACKGOURND AND PROBLEM SCOPE

Slow launch times & Brief usage durations

• Examine the thesis that mobile interactions are inherently brief

 Slow app launch is a substantial drag on use experience

• Triggers Context

• Triggers Context

Problem

The best triggers are different for different applications Significant variability across users

Dynamic triggers

Be calculated on a prelaunch-candidate basis as the set of top-k triggers most likely to lead to the launch candidate as a follower

Location Context

Given a location,

apps

[interpretation]

we are

Location Context

Burst Context

Decision Engine

- Step1: Likelihood Estimation
 - Context

Trigger, Location, Burst

• App Likelihood Estimation

Conditional probability on <Trigger, Location, Burst>

• Likelihood Estimates used as ranking metric...

Decision Engine

• Step2: Cost-Benefit Analysis

Implementation

- An OS services
- New application event upcall
- An ambient display widget

Evaluation: Micro-benchmarks

- Three critical parameters
 - the time taken for launching an app
 - the amount of energy consumed during app launch
 - the memory consumed by the app at launch time

Evaluation: Benefits of Individual Features

- Session Triggers and Followers
 - Triggers need to be both user- and app-specific
 - Make the case for Dynamic personalized triggers

Evaluation: Benefits of Individual Features

• Temporal Bursts

- An effective feature for improving prelaunch accuracy
- Three categories: all applications, Games, and First-party apps
- A discriminating feature that can improve prelaunching performance, especially for games

Evaluation: Benefits of Individual Features

- Location Clusters
 - Three categories: all applications, Games, and First-party apps
 - Also a discriminating feature, particularly for games

Evaluation: Combining Features

- Benefits of location + temporal features
 - Combining the two features gives better performance

Evaluation: Combining Features

- Benefits of dynamic triggers
 - The performance of dynamic triggers for each location is stable • for different users

Evaluation: Evaluation of cost-benefit learner

- Performance of Prefetching
 - Look at the benefit for apps that require fetching new content during the launch process

Evaluation: Evaluation of cost-benefit learner

- Performance of Preloading
 - Look at how app loading time can be improved by CBL learner, compared with LRU caching

Evaluation: Evaluation of cost-benefit learner

- Overall benefits
 - X-axis represents the energy budget provided to CBL
 - Y-axis represents the benefit of loading time which includes both app loading time and content fetching time

Evaluation: Bootstrapping FALCON

- Look at how fast the cost-benefit learner can learn from history of app usage to make accurate prelaunch decisions.
- The performance of FALCON grows as the training data size increases

Precision and recall of bootstrapping

Evaluation: System Overhead

• The resource consumption profile as follows

Binary Size	129 KB
Memory (stable state)	1840 KB
Processor utilization (stable state)	$<\!1\%$
Processor utilization per prediction	$<\!\!3\%$
Energy cost per prediction	$< 3 \ \mu Ah$

Table FALCON Overhead Profile

- Do not account for the periodic geolocation sampling costs
- Online feature extraction
 - (a) Perform location clustering cost much on a phone, therefore need to be done in the cloud
 - (b) Implement a light-weight online burst window detection algorithm
 - (c) Online burst detection as a small performance loss

DISCUSSION AND CONCLUSION

• Contribution

- From extensive data analysis, design spatial and temporal features that are highly indicative of mobile app access patterns
- Design a cost-benefit learning algorithm
- Prototype FALCON on a Windows Phone

• Future work

- Eliminating reliance on external servers or cloud services for model training in FALCON
- How users' expectations will change as the OS predictively prelaunches apps on their behalf

Ubiquitous and Mobile Computing CS 525M: Fast App Launching for Mobile Devices Using Predictive User Context

THE END THANK YIOLEL AUANG

Computer Science Dept. Worcester Polytechnic Institute (WPI)

