CS 525M Mobile and Ubiquitous Computing Healthcare and Personal Assistants Intro

Emmanuel Agu

Ubicomp for Healthcare

- Currently: Healthcare is
 - appointment-based (fixed time), infrequent
 - Specific location (hospital)
- Ubicomp can be used to provide healthcare
 - Continuously
 - Everywhere
- How?
 - Tracking wellness through phone sensors, cheap external sensors (e.g fitbit)
 - Give feedback, advise, share with support group

Wellness Tracking

- Current healthcare system is reactive
 - Doctors paid for treating ill patients
- Future (Obamacare)
 - Reward doctors for patients who don't get readmitted
 - Give incentives to patients with better wellness practices (e.g lower health insurance)
- Ubicomp allows easy continuous wellness logging, tracking and feedback

Smartphone as a medical Device

- Medical devices can be expensive
- Smartphones are quite powerful now (CPU and GPU)
- Use smartphone as a medical device
 - Implement DSP algorithms for sensing cough, asthma, etc on smartphone CPU/GPU
 - Patients download sensing app
 - Cost to patient: \$0 (free download or a few dollars)

Accurate and Privacy Preserving Cough Sensing using a Low-Cost Microphone

Eric C. Larson, TienJui Lee, Sean Liu, Margaret Rosenfeld, and Shwetak N. Patel.

In Proc. UbiComp 2011

Introduction

- Cough is most common symptom of illness
- Over 40% of people have or will have chronic cough
- Cough triggers many fears:
 - Fear of illness, loss of appetite, loss of sleep, etc.
- Cough detection used in diagnosis and treatment of many other ailments (Very broad impact):
 - Common cold, lung cancer, tuberculosis, pneumonia, asthma, bronchitis, allergies, infection, etc

Contributions

- Accurate cough detection
- 2. Method generalizes across subjects
- 3. Reconstructable cough audio
- Privacy of speech (detects cough, hides speaker)
- 5. Leverages existing mobile phone
- Cough detection: over 60 years of research
- This paper generalized approach previously proposed by authors, more accurate

- Mobile phone health applications: Sensing platforms for sensing health
 - Track water consumption, recognize activity levels, asthmalogging
- General cough detection: users wear specialized sensors to detect cough, increasing cost

 Audio Based cough sensing: Low cost but mostly proprietary algorithms

Algorithm (Author)	Sensing	Subjects	Recording Environment	Automation	Initial Calibration?	Mean True Positive Rate	Mean False Positive Rate	Mean False Alarms / Hr
LifeShirt	Throat Mic. +sensor array	N=8	Lab, 24 hours	Automatic	Yes	78%	0.4%	Not reported
VitaloJak	Piezo Sensor	N=10	Lab, 24 hours	Automatic	Yes	97.5%	2.3%	Not reported
HACC	Lapel Mic.	N=15	Clinic, 1 hour	Semi	Yes	80%	4%	Not reported
LCM (Matos)	Lapel Mic.	N=19	In Wild, 6 hours	Semi	Yes	71-82%	Not reported	13
LCM (Birring)	Lapel Mic.	N=19	In Wild, 2-6 hours	Semi	Yes	91%*	<1%	2.5
Our algorithm	Phone Mic. on necklace	N=17	In Wild, 2-6 hours	Automatic	No	92%	0.5%	17

Table 2. Summary of related work in audio based cough detection. *It is not clear if these rates are reported with or without a 95% energy threshold. [†]These rates are reported after review by an annotator.

- Audio Privacy:
 - Mostly work that tries to make speech undetectable
 - This work makes speech undetectable + cough reconstructable
- Eigen Feature selection: related to Principal Components Analysis (PCA) which authors use to classify coughs

Physiology of Cough (Cough Reflex)

- Initial deep inspiration and glottal closure
- 2. Contraction of the expiratory muscles against closed glottis
- 3. A sudden glottis opening with an explosive expiration
- 4. A wheeze or "voiced" sound

- Work focussed on characterizing exposive phase
- Generalizes across different people

- Subjects wear phone on neck or front pocket
 - Best audio quality but may not be most comfortable

Methodology

- Transformation and analysis in frequency domain
- Coughs parts had "signature" in frequency domain
- Applied Principal Components Analysis (PCA) to cough on spectrogram

Figure 2. (left) An example cough spectrogram. (top right) An example spectrogram of cough and non-cough audio sounds. (bottom left) An example of the reconstructed spectrogram using principal components analysis.

- PCA components used as features to capture cough signature for machine learning
- Goal: ML Classifier able to reconstruct coughs but not speech

Methodology

Demographics of Subjects

Subject Demographics and Dataset						
# Subjects	17	7 Female,10 male				
Age Range	18 - 60,	μ .=27, $mode$ =25				
Diagnosis	3 Asthma, 5 Chronic, 8 Cold, 1 Allergy					
Audio Recorded per Subject	3 - 6.5 hrs	$\mu = 4.2, mode = 3$				
Coughs per Subject	33 - 894,	$\mu = 150, mode = 79$				
Coughs/Hour	10 - 178,	$\mu = 33, mode = 15$				
Difference from Self Report	6 – 139 cough/hr	μ =22.8, mode=20				
Total Coughs	2558 coughs	1016 epochs				

Table 3. Demographic information and number of coughs collected of all the participants.

Methodology

Results of Sound Classification

- High rate of true positives
- Low rate of false positives

- If cough needs to be replayed reconstruct from PCA components corresponding to coughs
- Tested by playing back speech to humans.
 - Good enough?

Conclusions and Future Work

- 1. Accurate cough detection
- 2. Method generalizes across subjects
- 3. Reconstructable cough audio
- Privacy of speech
- 5. Leverages existing mobile phone
- Future work
 - Extend battery life to 24 hours
 - Increase accuracy

CS 525M Mobile and Ubiquitous Computing Discussion Points

Emmanuel Agu

- Evaluation: Were their claims backed up well by numbers?
- Will their solution work well in practice? Will it scale up well?
- What did you like about the paper?
- What did you dislike about this paper?
- Ideas for improvement/extension? Project ideas?

Tapping into the Vibe of the City using VibN, a Continuous Sensing App for Smartphones

Emiliano Miluzzo, Michela Papandrea, Nicholas Lane, Andy Sarroff, Silvia Giodano, Andrew Campbell

Introduction/Motivation

- Humans at would like to know ongoing events at other parts of their city
- Sample questions:
 - What music being played at a given club?
 - How many people are in the club? Demographics?
 - What is the quietest place in the city to read book?
 - How many people are jogging in the park right now?
- Characterize events in city spaces
- Dynamic: time-varying + location-dependent info

- Other frameworks for continuous sensing at scale
 - Tracking bikes
 - Audio noise mapping, etc
- Related Apps (manual user input)
 - Apps to promote awareness of city events
 - Apps to connect people socially (e.g FourSquare)
 - TwitMic: associates audio clips to twitter accounts
- Techniques proposed to optimize smartphone resources while continuously sensing

- Continuously running opportunistic sensing mobile application
 - Collects smartphone sensor data
 - Executes inferences
 - Presents results to user
- Real-time info on city hotspots
 - Live Points of Interest (LPOIs)
- LPOIs: Anywhere people spend a lot of time (work, home, fun)

Live Points of Interest (LPOIs)

- Information provided on LPOIs include
 - Demographics of its inhabitants (avg. age, ratio of men/women, relationship status)
 - Historical LPOIs: Replay of past demographics of LPOIs
 - Novel vibe it feature: audio recordings that can be played back
 - Privacy: segments with voice are filtered out
- Complete working app, deployed on Apple and Android app store
 - Released Nov 18, 2010, 1000 users in 6 months

VibN Client

- Consists of smartphone client + backend server
- Client may run on iOS or Android. Components
 - Sensing: Capture accelerometer, audio and location data
 - Data captured for:
 - Personal diary: personal POIs
 - Communications manager: communicates with VibN server
 - Duty Cycling Manager: reduce sampling to save resources
 - GPS + Record data only after user at location for 30 minutes
- Personal Data Manager: Determines importance of a location by analyzing duration of user's visit
 - 2 hours used as threshold for importance

VibN Client

- LPOI Manager: maintains up-to-date live and historical LPOI info on phone
 - Information partitioned by time windows
 - Demographic information manually entered by users
 - Future: sensors to auto-infer demographics
 - Historical LPOI stored for a month
- User Feedback Manager: Questions directly presented to users on client

VibN Backend

- Standard web service + python framework on Linux
- Anonymize audio data by randomly deleting short segments so conversations cannot be reconstructed
- Runs density-based spatial clustering (DBSCAN) algorithm to determine LPOIs

Evaluation

• Battery lasted 25 hrs on iPhone, 30hrs on Nexus One

(b) Fraction of Android Vs iOS users.

Sample of Clustering algorithm

Projects

- Next, I will talk about sample projects
- Remember:
 - Focus is on knowledge not creating a product
 - Prototype just demonstrates an idea
 - Research is done by a community of people
 - Quote: Good research is built on the shoulders of giants
 - You want to contribute a piece
 - Based on/extends other work
 - Small piece but well done (sound methodology, evaluation)

Final Project Ideas (VibN extension)

- Automatically process smartphone audio feeds
 - Classify events going on at location from audio
 - E.g. crowd noise vs conversation
 - Loud music?
 - Turn by turn (different speakers) = conversation
 - Combine with GPS lookup + pull schedule of venue from web, etc

- Detecting food I eat based on pictures taken + follow up user study
- Inferring calories of internet based recipes
- User study to compare accuracy + compliance, convenience of
 - Health worn sensors
 - Manual data input into smartphone
 - Automatic data input into smartphone (continuous sensor)

- Asthma weezing detector.
 - Asthma attach weezing has spectral signature
 - Analyze and detect
 - Requires signal processing experience

 Implement and compare various activity recognition algorithms based on accuracy, sensitivity, etc. + User studies

- Improve the efficiency of activity detection by maintaining location history + what activities at locations
 - Track what has the user done at that location before?
 - Also allow user to annotate so that system can
 - learn and get better.