Ubiquitous and Mobile Computing
CS 525M: RiskRanker: Scalable and
Accurate Zero-day Android Malware
Detection

Martti Peltola

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Introduction/Motivation:
What was the main problem addressed?

e Mobile devices have become popular targets for malware
authors, threatening privacy, security, and finances.

e The growth in the number of malicious and high risk Android
apps has far exceeded predictions.

Introduction/Motivation:
What was the main problem addressed?

From Wiki:

e Traditionally, antivirus software relies upon signatures to
identify malware. This can be very effective, but cannot defend
against malware unless samples have already been obtained,
signatures generated and updates distributed to users. Because
of this, signature-based approaches are not effective against
zero-day viruses.

e A Zero day virus is a previously unknown computer virus or
other malware for which specific antivirus software signatures
are not yet available.

Introduction/Motivation:
What was the main problem addressed?

e Traditional signature based Reactive malware detection is too
slow to respond to rate of new threat generation.

L *

e Malware is only detected after it has been installed and
operating.
e GooglePlay and alternative stores make distributing malware

simple. (Apple’s review process has prevented approving malware at its store. So far).

o
Introduction/Motivation: o
What was the main problem addressed? .

e The authors proposed and implemented a proactive
prototype zero-day malware detection scheme, called
RiskRanker, which flags malware while it is still at the

app store. Store curators can then remove the app from
distribution.

Introduction/Motivation: o
What will be learned?

e The authors wish to demonstrate that a proactive
approach can detect zero-day malware.

e Their system does not require prior recognition of a new
malware threat and updating of remote devices

e Their system can detect the threat while still in the app
store

Related Work: 5

What else has been done to solve this problem?

e Reactive malware detection systems

e ProfileDroid (week 10 paper). Detected various system
calls, network access, and resource utilization. Could
potentially detect malware in operation.

e Stowaway. Static analysis tool to detect over-privilege
access in Droid apps.

e TaintDroid. Dynamic analy5|s to detect information
leaks on phones. '

Methodology
Approach and Design

e The prototype system was designed to be scalable, paralizable, and
accurately sift through a large number of apps from various Android
markets

e The goal was to reduce and rank suspected apps by risk, from a large list to
one that was short enough to verify manually.

2 s |- | e

e RiskRanker sends apps through 2 sets
of analyzers:

e Aset of first order modules evaluate
straightforward risks (malware not
hiding malicious elements)

e Aset of second order modules looks for
techniques that indicate malicious code
is being purposely hidden from
detection.

Methodology
Approach and Design

e First Order analysis
e Detecting high-risk apps
Look for known exploits (see table 1) which leverage platform level vulnerabilities from use
of native Android code
Can reduce search set by finding presence of native code.
Such exploits bypass built in security measures
Identify vulnerability specific signature of exploit (Exploid utilizing init daemon).

Table 1: An overview of existing platform-level ex-

ploits in Android

Exploit Vulnerable Malware with
Name Program the Exploit
Asroot [9] Linux Kernel Asroot
DroidDream, zHash
Exploid |8 ini ’
xploi [] it DroidKungFu
GingerBreak [29] vold GingerMaster
KillingInThe
hm -
NameOf [2] ashmen
DroidDream
B Brid
RATC [12] adbd asesridge
Zimperlich [30] zygote DroidkungFu
DroidDeluxe
DroidCoupon
zergRush [20] libsysutils -

Methodology
Approach and Design

e First Order analysis

e Detecting medium-risk apps

Look for behaviors that result in surreptitious charges
Sending SMS to premium phone numbers (and earn malware authors $SS)
Need to distinguish legitimate use of such functions

Assume legitimate actions initiated actions which invoke callbacks (button press
callback)

Perform static data-flow and control-flow of Dalvik bytecode to see that money
charging operations trace back to callbacks

Such analysis complicated by concurrent operations, code obfuscation, reflection, and
actions initiated in external threads.

Minimize such issues by employing backward and forward slicing.
= Slicing is technique of identifying reachable code or data

Methodology
Approach and Design

e Second Order analysis - Look for patterns common to malware,
and rare in legitimate apps

e Pre-processing
Look for secondary (child) apps within host app. Ny
Look for apk or jar files saved in assets or res directories

e Encrypted native code execution H :‘i!
Hides signature of malevolent code "' — 'ﬂ..l.-'
Look for calls to decryption routines -l
e Unsafe Dalvik code loading o
Load malevolent code at runtime S B ‘:ﬁl
Bypasses discovery during static analysis \

Look for use of DexClassLoader

Methodology :

Prototyping and Evaluation

e RiskRanker implemented as Linux application, using 3.6 K lines of Python,
and 8.7 K of Java.

e Contains high-risk root exploit detection module aware of 7 kinds of
known exploits (see Table 1, which only shows 67?).

e Contains medium-risk detection module which scans for
Sending background SMS
Making background phone calls
Uploading call logs
Uploading received SMS messages

e Apps were preprocessed and data placed into MySQL to allow quick
indexing and lookup.

Methodology :

Prototyping and Evaluation

e 118,318 apps were collected over 2 months from GooglePlay
(49.8%) and 14 alternate markets. Due to overlap in markets, this
came to 104,874 distinct apps

e RiskRanker analyzed apps on a local 5 node cluster, with each
node having 8 cores and 8GB of memory

e On this system, RiskRanker could process 3500 apps per hour

e Collected apps were processed in 30 hours.

Results
Verification experiments

e From this collection, RiskRanker identified:
718 malicious apps from 29 malware families
Of these, 322 were zero-day from 11 new families

First order risk analysis revealed 220 malware samples from 25
families

Second order risk analysis found 499 samples from 6 families
Summary of results in Table 2

Results
Verification experiments

Table 2: Owverall results from RiskRanker

First-Order Risk Analysis Second-Order Risk Analysis
Family # Samples | Zero-day? .] . . Encrypted Native | Unsafe Dalvik
' i ' High-Risk | Medinm-Risk g . . .
g S ! = Code Execution Code Loading
Androidbox 13 Vv
AnserverBot 185 Vv v Vv
BaseBridge 7 W
BeanBot G v v
CoinPirate 1 v
DogWars 1 v
DroidCoupon 1 v W
DroidDream 2 v
DroidDreamLight 30 v
DroidFun 1 v v
DroidKunglul 3 N
DroidKungFu2 1 W v
DroidKungku3 213 v
DroidKungkFu4 06 v N
DroidKungFuSapp 2 Vv v
Droix u_- ive 10 v v
DroidStop 7 v v
FakePlayer 1 v
Ficon 9 v v
Gelinimi 24 W v
GingerMaster 2 W
GoldDream 21 v
Kmin 45 v
FPjiapps 7 v
Pushme 1 v
Roguelemon 2 v v
RuPaidMarket 3 v
TigerBot 3 v v
YZHO 8 Vi
Total T18 11 ¥ 20 51 1

Results
Verification experiments

e First Order Analysis Results
e High-risk apps found (Table 3)

Table 3: Malware discovery in high-risk apps

Apps with | High-risk | Actual

native ecode apps malware
of apps 0, 877 24 14
Percentage 0.42% 0.02% 0.01%

e 24 High risk apps using known root exploits

e Only 3 Table 1 exploits in use (Exploid, RATC, GingerBreak)
e Found some exploits repackaged into popular legit apps

e System also detected legit (??) jail break tool

Results
Verification experiments

e First Order Analysis Results
e Medium-risk apps found (Table 4)

2437 apps were found to send
background SMS

Of these, only 1223 distinct paths

A person manually analyzed these in 2
days. Of these, 94 paths were malicious

Overall of 2437 medium-risk apps, 206
were infected, including 8 zero-day
malware families.

Family # Samples | Zero-day?
Androidbox 13
AnserverBot 1 N
BeanBot G v
CoinPirate 1
DogWars 1
DroidDreamLight 30
DroidFun 1 N
DroidLive 10 N
DroidStop 7 N
FakePlayer 1
Fjcon 9 N
Geinimi 23
GoldDream 21
Kmin 48
Pjapps 17
Pushme 1
RoguelLemon 2 N
RuPaidMarket 3
TigerBot 3 v
YZHC 3
Total 206 IS)

Table 4: Malware discovery in medium-risk apps

Results .o
Verification experiments

Table 5: Malware discovery in second-order risk
analysis

e Second Order Analysis Results
DroidKungFu2 |25 1
. . DroidKungku3 [24 213
e Medium-risk apps found (Table 5) | btwnin
. AnserverBot [21] 184
e 328 apps encrypt native code Total

e 4257 apps feature dynamic code loading, 1655 contain a
child package, there are 492 apps in common.

e Some are legit. These signatures were white listed to
reduce the number of apps being considered.

e They found one very nasty zero-day app (AnserverBot,
removes mobile security software, and other things), and
released a security alert.

Results
Verification experiments

e False Negative Measurements

The authors demonstrated the effectiveness of
RiskRanker in finding new (zero-day) threats.

They then downloaded a set of known malware from a
public contagion repository (exists for research?)

After removing duplicates, the set consisted of 133 apps
from 31 families.

RiskRanker identified 121 of the 133 malevolent apps.

Analysis determined that the detection failures were out
of scope of the detection modules of RiskRanker.

Results
Verification experiments

e Malware Distribution Breakdown:

e Malware could be detected in all of the markets
(GooglePlay included)

e At one market, 220 apps, or 3% of their offerings were
infected.

e 4 alternative markets offered at least 90 malware apps.

e Google only had 2 out of 52,208 apps infected. This may
be due to adoption of GoogleBouncer (its approach to
cleansing their market is unknown)

Discussions/Conclusions/Future Work

e The authors found that their RiskRanker system
detected previously unknown malware from various
stores.

e The system, even in a limited prototype stage, was
very effective

e They discuss some weaknesses:
obfuscation complicates path analysis

a malware author could write their own crypto routine, so
the known call used for detection is skipped.

Can hide malicious code as a large array of innocent
looking bytes.

References

Wiki ()

, Trend Micro Warns of Increased
Android Malware, Stephanie Mlot, For malware growth figure and broken android art.

RiskRanker: Scalable and Accurate Zero-day Android Malware Detection,
Michael Grace t, Yajin Zhou *, Qiang Zhang, Shihong Zou , Xuxian Jiang t
TNorth Carolina State University NQ Mobile Security Research Center
{mcgrace, yajin zhou, xjiangd}@ncsu.edu {zhangqiang,

A Survey of Mobile Malware in the Wild,

Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steven Hanna, and David Wagner
University of California, Berkeley
{apf,finifter,emc,sch,daw}@cs.berkeley.edu

Thank You!

Questions?

