Mobile and Ubiquitous Computing CS 525M: A Survey of Mobile Malware in the Wild

Hiromu Enoki

Computer Science Dept. Worcester Polytechnic Institute (WPI)

- Mobile Malware is fairly recent
 - July 2004 Cabir virus came out on Symbian
 - August 2010 Fake Player on Android
 - July 2012 Find and Call on iOS
- Evolving rapidly
 - Amusement
 - Credential Theft
 - SMS spam
 - Ransomware

- Sensitive personal information on mobile device
 - E-mail, contacts, passwords...
- Root exploits and Jailbraking
 - Exploits used by both users and adversaries
- Any easy way of defending against malwares?
 - Permissions?
 - OS features?
 - App reviews?

Extensive research done on PC malwares

- Feasibility and profitability of mobile malware has been researched since 2004
 - Spam, Identity theft, DDoS, wiretapping were predicted
- Malware on other mobile platforms

- Apple App Store
 - All applications are reviewed by human
 - iOS devices can only obtain apps through here, unless jailbreaked
- Google Play (Android Market)
 - Some applications may be reviewed
 - Does not restrict installing apps from other markets
- Symbian Ovi
 - Security automatically reviewed by program
 - Risky applications are reviewed by human
 - Can install apps from other markets

- Analyzed information about 46 malwares that spread between Jan. 2009 – June 2011
 - 4 iOS
 - 24 Symbian
 - 18 Android
- Information from anti-virus companies and news sources
- Omitted spyware and grayware

- Analyzed permissions of 11 Android malwares
 - Categorized and counted how many permissions they require
 - Attempted to determine malware from permission requests

- Researched on 6 Android devices of root exploits
 - Compared firmware release dates with root hack information on xda-developers

Results

Exfiltrates user information	28
Premium calls or SMS	24
Sends SMS advertisement spam	8
Novelty and amusement	6
Exfiltrates user credentials	4
Search engine optimization	1
Ransom	1

Table 1: We classify 46 pieces of malware by behavior. Some samples exhibit more than one behavior, and every piece of malware exhibits at least one.

- Minor damage
 - Changing wallpapers, sending annoying SMS
- A preliminary type of malware
 - Expected to decrease in number

- Personal information obtained via API calls
 - Location, contacts, history, IMEI
- Information can be sold for advertisement
 - \$1.90 to \$9.50 per user per month

 IMEI information can be used to spoof blacklisted phones

- Malwares can intercept SMS to circumvent twofactor authentication
 - Done in conjunction with phishing on desktops
- Keylogging and scanning documents for passwords
- Application sandboxing prevents most of these

- Premium-rate calls and SMS directly benefits adversaries
 - Few dollars per minute or SMS
- 24 of the 46 malwares send these
 - Mostly on Android and Symbian
- iOS avoids this by always showing confirmation for outgoing SMS messages

- Distributing spam origin makes blocking harder
- Less noticeable when having unlimited SMS
- Phone numbers are more "reliable" than e-mail

 Can be prevented by enforcing SMS to be sent from a designated confirmation window

- Clicks on a certain link on a search query to increase visibility
- Phishing websites use this technique, along with desktop malware
- Can be prevented with affixing an applicationunique tag on the HTTP request
 - Privacy concerns?

- Kenzero Japanese virus included in pornographic games distributed on the P2P network
 - Asked for Name, Address, Company Name for "registration" of software
 - Asked 5800 Yen (~\$60) to delete information from website (Paper information is wrong)
 - About 661 out of 5510 infections actually paid (12%)
- Not many Ransom malwares on mobile yet....

- Advertising Click Fraud
- Invasive Advertising (AirPush)
- In-Application Billing Fraud
- Government spying
- E-mail Spam
- DDoS
- NFC and Credit Cards

- →Trend Micro PDF
- http://www.trendmicro.com/cloudcontent/us/pdfs/securityintelligence/reports/rpt-evolved-threats-in-apost-pc-world.pdf

Android Malware Permissions

- 8 out of 11 malwares request to send SMS (73%)
 - Only 4% of non-malicious apps ask for this
- READ_PHONE_STATE is used by 8/11 malwares
 - Only 33% for non-malicious apps
- Malware asks on average 6.18 dangerous permissions
 - 3.46 for Non-malicious apps

Number of	Number of		Number of
Dangerous	non-malicious		malicious
permissions	applications		applications
0	75	(8%)	-
1	154	(16%)	1
2	182	(19%)	1
3	152	(16%)	-
4	140	(15%)	2
5	82	(9%)	1
6	65	(7%)	-
7	28	(3%)	2
8	19	(2%)	1
9	21	(2%)	1
10	10	(1%)	1
11	6	(0.6%)	1
12	7	(0.7%)	-
13	4	(0.4%)	-
14	4	(0.4%)	-
15	2	(0.2%)	-
16	1	(0.1%)	-
17	1	(0.1%)	-
18	-		-
19	-		-
20	1	(0.1%)	-
21	-		-
22	-		-
23	1	(0.1%)	-
24	-		-
25	-		-
26	1	(0.1%)	-

Table 2: The number of "Dangerous" Android permissions requested by 11 pieces of malware and 956 non-malicious applications [28].

- Rooting allows higher level of customization
 - Installing from unofficial markets
 - System Backups
 - Tethering
 - Uninstalling apps

 However, malwares can take advantage of root commands to obtain permissions

Root Exploits

Figure 2: A timeline displaying the dates that known root exploits were available for 6 popular Android phones. Circles mark the release dates of the phones.

- Root exploits available for 74% of device lifetime
- Malware authors do not need to investigate them, but the community does

- Mobile malware rapidly grew in number
- Profitability is the current trend for malwares
- Defense against mobile malware requires more research
- Human review are effective methods to prevent malware
- Rooting benefits both users and malware producers

Thank You!

• Questions?

References

- A survey of mobile malware in the wild Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wagner. in Proc. SPSM 2011.
- World's First Android Virus, Nikkei ITPro, http://itpro.nikkeibp.co.jp/article/NEWS/20100816/3 51137/
- Bluetooth-Worm:SymbOS/Cabir, F-Secure Threat Description, http://www.f-secure.com/vdescs/cabir.shtml

References

- Find and Call: Leak and Spam, Securelist, http://www.securelist.com/en/blog/208193641/
- Kenzero: 40 times more successful than traditional spoofs, http://internet.watch.impress.co.jp/docs/news/2010 0401 358380.html
- AirPush : la publicité dans les notifications qui ressemble à du malware, http://www.frandroid.com/applications/92449_airp ush-la-publicite-dans-les-notifications-qui-ressemblea-du-malware