Week 4 – Wireless Networking, measurement and Internet Connectivity

Su, Scott, Hui, et al. – Haggle: Seamless Networking for Mobile Applications
Haggle: The idea

• Separate application logic from transport bindings
 – i.e. applications can focus on their task; someone else will make sure the data gets in an out successfully.

• Authors provide a proof of concept for web browsing and e-mail.
Haggle: The idea

• Haggle uses **late binding**
 – Don’t worry about network connectivity etc. until actually trying to transmit data

• **Applications can communicate**
 – Share data and metadata

• **Manage local and shared resources**
 – Options/preferences for all sources can be managed on any device
Author Examples

• Send an e-mail to person next to you
 – Ideally use Bluetooth or 802.11.
 – In practice, phone->e-mail server, recipient’s e-mail server->phone. Slow!

• Reading news while on public trans
 – Internet connection dies, goodbye news.
 – Ideally, we can borrow the same news stories from browsers all around us.
Our Examples

• A few additional ideas:
 – Shared GPS information
 – Haggle chains. Devices like repeaters.

• What else could be made possible?

• Concerns?
Haggle: How it works

• Just-in-time binding
 – Provide alternate routes for data when usual channels are slow or unavailable

• Persistent data/metadata
 – Stored as key/value pairs, united in direct relationships, ownership & dependency

• Centralized resource management
 – Device preferences define behavior
Just-in-time binding
Connectivity Interfaces

• Must support many networking technologies
 – Differ by range, latency, bandwidth, cost, availability, power, etc.

• Connectivity - A schedulable resource
 – Even two of the same kind of connection are considered separate resources

• Haggle currently focuses on 802.11
Just-in-time binding
Protocols and Forwarding

• Different protocols, different needs
 – HTTP -> web server & request objects
 – P2P -> direct in and out from a peer

• Once connection is made, forwarding
 – Haggle can maintain multiple connections and can forward to all
 – Choices are made by running many algorithms in sync
Just-in-time binding
Forwarding algorithms

• Epidemic – Spread to all like a virus
• MANET – [Minimum Exposed Path to the Attack] in Mobile Adhoc Network. Can be based on:
 – Geography
 – Distance-vectors
 – Mobility-based
 – Store and forward
Just-in-time binding
Naming for Forwarding Algorithms

(a) Message and Attachment

(b) Name Graph

Fig. 2: Example Data and Name Object Graphs
Data Management

Data Objects

• Haggle data is structured & searchable
 – Information is findable and searchable for Haggle and its client applications
 – Think: Google Desktop

• Data objects are type/value pairs
 – Usually strings, binary also works
 – Metadata is usable, encouraged, but not mandatory
Data Management
Relationships

• Data is connected
• Can represent prerequisites
 – Photo album links to its pictures
 – E-mail links to its attachments
 – Webpage links to
• Can represent ownership
 – Browser owns cached items
 – Mail client owns stored e-mail
Scheduling and Managing Data Objects

• Resource manager schedules tasks
 – Operations are asynchronous or immediate
• Priority can vary over time as interfaces because more and less costly
• Tasks can ask for extensions
• The shared data management is utilized with just-in-time binding to make these scheduling decisions.
Haggle: Existing Applications

E-mail

• Consists of two elements:
 – SMTP/POP proxy for e-mail clients
 – SMTP/POP protocols for e-mail servers

• Haggle acts as an intelligent mailbox
 – If connected to the internet, send away
 – If not, client sends through proxy, Haggle uses available network interface to find easiest path out the door.
Haggle: Existing Applications

Fig. 3: Haggle Email and Web Applications
Haggle: Existing Applications

• Other features that would be nice?

• Data or relationships we can store for browsers or e-mail clients?

• More existing applications that would be improved by Haggle?
Haggle: Experiments

- Deployed using Java J2ME CDC
 - Useable on laptops and mobile platforms
- Experiments were conducted with two Windows XP machines.
Haggle: Experiments

E-mail

• Used Gmail
 – Has a 10 MB cap for outgoing messages
• Sent messages from one laptop to other
 – 0 bytes < sent messages < 10MB
 – Faster performance with Haggle when allowed to ad hoc transmit messages
Haggle: Experiments

Browser

• Used Firefox with FasterFox plug-in
• Measured with four different web sites
 – Different characteristics, like text heavy, image heavy, update heavy, etc.
 – Tried 7 times, cleared cache before each
• Did not give better performance
 – Possibly due to parsing overhead, HTML parsing time, inefficiencies in the data manager
Haggle: Experiments

Results
Haggle: Experiments

Thoughts

• What do you think about their experiments? And the results?

• What other testing would be useful?
Haggle: Discussion
Authors’ future work

• Future ideas:
 – Resource-friendly media sharing
 • Sync with home, share with friends
 – Predictive/preemptive browser fetching

• Preferences, preferences, preferences!
Haggle: Discussion
What we think

• Is Haggle a good idea? Are there additional good uses for it?
• How successful were the authors?
• How feasible is “good enough” security?
• Ideas for apps in a related field?