Design and Evaluation of a new MAC Protocol for Long-Distance 802.11 Mesh Networks by Bhaskaran Raman & Kameswari Chebrolu

ACM Mobicom 2005

Reviewed by Anupama Guha Thakurta

CS525M - Mobile and Ubiquitous Computing Seminar, Spring 2006

OUTLINE

- Introduction
- Background
- Protocol Design and Implementation
- Topology Construction
- Evaluation
- Discussion and Conclusions
- Comments

Worcester Polytechnic Institute

CS525M 1

INTRODUCTION

Motivations for new protocol:

- low cost internet access to rural areas
- achieve performance improvement over 802.11
 CSMA/CA in long distance mesh networks
- 802.11 CSMA/CA MAC was designed to resolve contentions in indoor environments
- Use of wire-line, cellular or 802.16 currently prohibitive because of costs

WPI

INTRODUCTION (Cont.): Issues Addressed

 Find an alternative to 802.11 CSMA/CA MAC protocol that allows simultaneous synchronous transmission / reception of multiple links at single node

Propose a new MAC protocol: 2P

Cost advantages with off-the-shelf 802.11 hardware

Show dependence of 2P on network topology

- Show that more UDP throughput than CSMA/CA is achievable (achieved 3-4 times)
- Show that more TCP throughput than CSMA/CA is achievable (achieved 20 times)

Worcester Polytechnic Institute

INTRODUCTION (Cont.): Mesh NW Characteristics

- Multiple radios per node (one radio per link)
- High-gain directional antennae
- Long distance point-to-point links of several kilometers
 - Landline node

Worcester Polytechnic Institute

OUTLINE

- Introduction
- Background
- Protocol Design and Implementation
- Topology Construction
- Evaluation
- Discussion and Conclusions
- Comments

Worcester Polytechnic Institute

CS525M 14 March 2006

BACKGROUND SynOp: Simultaneous Synchronous Operation (SynRx / SynTx)

- Syn-Rx: R1 and R2 receive simultaneously; Feasible
- Syn-Tx: T1 and T2 transmit simultaneously; Feasible
- Mix-Rx-Tx: R1 receives and T2 transmits; Not feasible

Worcester Polytechnic Institute

BACKGROUND (Cont.): SynOp: Simultaneous Synchronous Operation (SynRx / SynTx)

- In 802.11 Mix-Rx-Tx is not feasible because of:
 - ✓ physical proximity and side lobes of directional antennae
- In 802.11 SynOp is feasible but not allowed because:
 - SynRx: IFS based immediate ACK mechanism
 - ✓ SynTx: Carrier sense mechanism of interfaces give rise to backoffs

Worcester Polytechnic Institute

CS525M 14 March 2006

OUTLINE

- Introduction
- Background
- Protocol Design and Implementation
- Topology Construction
- Evaluation
- Discussion and Conclusions
- Comments

Worcester Polytechnic Institute

CS525M 14 March 2006

2P PROTOCOL DESIGN & IMPLEMENTATION

- SynOp is possible by disabling ACK and Carrier sense mechanisms
- Simple Concept: each node switches between SynRx & SynTx
- When a node is in SynRx its neighbors are in SynTx phase and vice the versa
- Bipartite Topology

Worcester Polytechnic Institute

B SynTx a) Links: A->B, A->D, C->B, C->D SynTx SynRx b) Links: B->A, B-->C, D->A, D->C Note: diagram ignores system and propogation delays

Figure 4. 2P Illustration

CS525M 14 March 2006

WPI

2P PROTOCOL DESIGN & IMPLEMENTATION (Cont.):

Solutions for SynRx in existing hardware:

Disable immediate ACKs' by:

- Independent Basic Service Set mode for interface operations, with separate SSID
- Convert IP unicast pkts. to MAC broadcast pkts. at the driver level
- Send ACKs' in the LLC implemented by the driver, by piggybacking them on data packets

CS525M 14 March 2006

2P PROTOCOL DESIGN & IMPLEMENTATION (Cont.):

• Solutions for SynTx in existing hardware:

Disable carrier-sense backoffs by:

utilizing the two antennae connector feature provided by Intersil Prism chipset

How it works:

- Select receiving antenna at driver level by antsel_rx command
- ✓ Connect external antenna to, say LEFT connector of radio card
- During transmission, the receiving antenna connector which is not connected to any external antenna is set to RIGHT
- This forces carrier-sense to happen on the RIGHT connector which sees only negligible noise

Switch the receiving antenna to LEFT connector before switching from SynTx to SynRx
 Unconnected

CS525M 14 March 2006

Worcester Polytechnic Institute

2P PROTOCOL DESIGN & IMPLEMENTATION (Cont.): Loose Synchrony

CS525M

An interface sends
 B bytes in SynTx,
 then sends a
 marker packet as a
 "token"

Enter the SynRx phase

 Switch to SynTx upon receiving a marker packet or upon timeout
 OVERHEAD?

14 March 2006

Worcester Polytechnic Institute

2P PROTOCOL DESIGN & IMPLEMENTATION (Cont.): Problems in Loose Synchrony

- Temporary loss of synchrony (marker loss)
- Link intialisation (link recovery after failure)

Worcester Polytechnic Institute

2P PROTOCOL DESIGN & IMPLEMENTATION (Cont.): Problems in Loose Synchrony

• Two ends of a link get out of synchrony and timeout at the same time

(bumping) to the timeout value each time

Worcester Polytechnic Institute

CS525M 14 March 2006

2P PROTOCOL DESIGN & IMPLEMENTATION (Cont.): Communication Across Interfaces

- Coordination of interfaces to switch from SynRx to SynTx
 - Once an ifa decides to switch to Tx, it sends a notification (NOTIF) to other ifa-nbrs', and waits for NOTIF from them.
 - Aware of UP / DOWN status of other ifa-nbrs'. (observation of 3 consecutive time-outs implies DOWN)
- Coordination of interfaces to switch from SynTx to SynRx
 - Not necessary since all ifas' begin Tx simultaneously and with the same duration of B bytes

Worcester Polytechnic Institute

CS525M 14 March 2006

OUTLINE

- Introduction
- Background
- Protocol Design and Implementation
- Topology Construction
- Evaluation
- Discussion and Conclusions
- Comments

17

Worcester Polytechnic Institute

TOPOLOGY CONSTRUCTION

Constraints in Topology

Bipartite Constraint:

- If a node is in SynRx its neighbors should be in SynTx and vice versa
- Implies no odd cycles are present
- Power Constraint: For proper reception we require that
 - the signal level is above min. reqd. power level
 P_{min}
 - SINR has to be above the interference by SIR_{reqd}

Worcester Polytechnic Institute

CS525M 14 March 2006

TOPOLOGY CONSTRUCTION (Cont.):

For a given topology

- Power transmission
 P_i's, (i = 1,2,...N_A) are variables
- d(i, j), distance between the nodes corresponding to antennae a i and a j is known
- g(i, j), effective gain when a_i is transmitting and a_j is receiving, is known

Overall gain from a_i to $a_j =$ (Gain of a_i 's Tx in a_j 's dirn) × (Gain of a_j 's Rx in a_i 's dirn) = Gain at angle α × Gain at angle β

Figure 9. Illustrating gain from a_i to a_j

19

Worcester Polytechnic Institute

Worcester Polytechnic Institute

TOPOLOGY CONSTRUCTION (Cont.): Parameters in the Power Equations

- P_min: -85 dB for 11Mbps reception
- SIR_reqd: 10 dB for the 10⁻⁶ BER level, set to 14-16 dB in topology construction
- The antenna radiation pattern that decides the gain in different

angles.

21

Worcester Polytechnic Institute

TOPOLOGY CONSTRUCTION (Cont.): Topology Formation

- Construct a tree topology that satisfies the two constraints
 - Suppose all (or most) traffic passes through the land-line node and don't do multi-path routing
 - A tree rooted at the land-line node satisfies the bipartite constraint
 - Fault tolerance can be solved by morphing

Worcester Polytechnic Institute

TOPOLOGY CONSTRUCTION (Cont.): Topology Formation

- Form a spanning tree with following heuristics
 - -(H1) Reduce length of links used
 - Interference and power consumption
 - -(H2) Avoid "short" angles between links
 - Side-lobe leakage
 - ang_thr of 30 to 45 degrees
 - -(H3) Reduce hop-count
 - Deep trees = bad latency

Worcester Polytechnic Institute

CS525M 14 March 2006

TOPOLOGY CONSTRUCTION (Cont.): Algorithm

- 1. Set of Unconnected nodes is U, set of all possible connection links is S, create links at h_i
- 2. Order the links in S in increasing order of distance
- 3. For each link do
 - angle threshold check: ignore if angle < ang_thr, else add</p>
 - Feasibility check (power constraint equation)
- 4. If all nodes connected, stop.
- If successful in adding link in step 3, continue with step 1
- If not successful in adding link in step 3, and link formed in h_i, go to next link, go to step 1.
- If not successful in adding any link, and no link formed for h_i, declare failure, and stop.

Worcester Polytechnic Institute

CS525M 14 March 2006

OUTLINE

- Introduction
- Background
- Protocol Design and Implementation
- Topology Construction
- Evaluation
- Discussion and Conclusions
- Comments

Worcester Polytechnic Institute

CS525M 14 March 2006

EVALUATION: of topology creation

Purpose

- The effectiveness of the algorithm
- The effect of varying the parameter SIR_{regd}

Evaluation subjects

- 4 collections of villages from a local district map
 - •Q1, Q2, Q3 and Q4
 - Q1 has 31 nodes
 - Q2-Q4 have 32 nodes, respectively
- Topologies randomly generated

50 nodes in an area of 44Km X 44Km

Worcester Polytechnic Institute

CS525M 14 March 2006

EVALUATION: of topology creation

EVALUATION: of topology creation

Worcester Polytechnic Institute

EVALUATION: simulation studies

• Goals:

- To measure the impact that step by step link establishment has on loosely synchronized network
- Saturation throughput performance compared to CSMA/CA protocol
- Performance of TCP over 2P operated networks

CS525M

14 March 2006

EVALUATION: extensions to ns-2

– ns-2 extended for:

- Multiple interface support
- Directional antenna support
- MAC modifications
- LLC modifications

31

Worcester Polytechnic Institute

EVALUATION: Simulation results

• Link Establishment:

 Method: add links one after another to an already synchronized network

Results:

- Took 12.9ms for first link establishment
- Reason: first transmission of both ends of link coincide and had to use bumping to establish link
- Took 4.9ms for rest of the links to establish
- No noticeable difference in throughput of already synchronized links while adding new links

Worcester Polytechnic Institute

CS525M 14 March 2006

EVALUATION: Simulation results

- Saturation throughput
 - UDP traffic
 - One packet every 2ms
 - Packet size: 1400 bytes
 - Results:
 - Nodes operated in 2P achieve around 3-4 times more bandwidth than operated in the CSMA/CA protocol

Worcester Polytechnic Institute

EVALUATION: Simulation results

TCP Performance

In loss free: Up to 20 times better performance than CSMA/CA

Worcester Polytechnic Institute

EVALUATION: Implementation based results

- Prototype implementation on HostAP v0.2.4 on Linux v2.4.20-8
- Confirmation of SynOp with Prism2 cards:
 - 6.5Mbps throughput on each link at the same time.

• 2P performance on a single link:

- 3.05Mbps average throughput lower than 4.4Mbps observed in simulations
- Overheads of marker pkts. And changing of antsel_rx in Prism2 cards give a combined throughput of 6.1Mbps which is less than 6.5Mbps observed.

Worcester Polytechnic Institute

EVALUATION: Implementation based results (Cont.)

- Sub-optimal performance of 2P on a pair of links:
 - Per interface throughput is lower than 3.05 Mbps because contention window set at 32 instead of 1 hence random backoff even in the absence of carrier sense
 - Limitations in driver level approach to 2P implementation
 - Stress of CPU scheduling involved in copying of rx/tx bytes to/from hardware as PCMCIA cards used didn't have Direct Memory Access

	Avg (SD)	Avg (SD)	Avg (SD)	Avg (SD)
	thrpt at	thrpt at	thrpt at	thrpt at
	A (Mbps)	N_1 (Mbps)	N_2 (Mbps)	B (Mbps)
2P	2.70 (0.31)	2.06 (0.24)	2.81 (0.15)	2.81 (0.10)
CSMA	2.07 (0.13)	1.13 (0.22)	1.90 (0.15)	3.11 (0.14)
COULT	2:07 (0:10)	1.15 (0.22)	1.50 (0.15)	5.11 (0.1

Table 1. 2P on two links, versus CSMA

Worcester Polytechnic Institute

OUTLINE

- Introduction
- Background
- Protocol Design and Implementation
- Topology Construction
- Evaluation
- Discussion and Conclusions
- Comments

Worcester Polytechnic Institute

CS525M 14 March 2006

Discussion and Conclusions

- Prior work involves Spatial reuse Time Division Multiple Access (STDMA) scheduling
- The present work differs in:
 - ✓ Multiple radios per node
 - Directional antennae
 - Exact location of nodes
- Fault tolerance and Morphing
 - Trees are not very fault tolerant
 - > Morph the topology in the event of a failure
 - -Provision additional links, but turn them on only as needed
 - Morphing can be used to create new routes when network equipment is turned off

Worcester Polytechnic Institute

CS525M 14 March 2006

OUTLINE

- Introduction
- Background
- Protocol Design and Implementation
- Topology Construction
- Evaluation
- Discussion and Conclusions
- Comments

Worcester Polytechnic Institute

CS525M 14 March 2006

COMMENTS

Pros:

1.Performance enhancement

2.Low cost

implementation

- 3. Fault tolerance solution
- 4. Feasible protocol

Cons:

- Requires one dedicated transceiver for each link
- 2. Reconfigure on node's joining / removal / relocation
- 3. Topology is centralized with multiple landlines
- 4. Transmit empty pkts fairness & security

Worcester Polytechnic Institute

