CS 525M – Mobile and Ubiquitous Computing Seminar

Brian Demers
March 2, 2004
Overview: Micromobility Protocols

- “Comparison of IP Micromobility Protocols” (2002, Campbell et al.)

- Background
 - What is micromobility?

- Paper
 - Paper goals
 - Protocols (CIP, Hawaii, HMIP)
 - Results

- Conclusions
Micromobility
Micromobility

- Mobile IP

 - Works fine when user is stationary
 - What if user moves frequently?
 - Disrupts data stream, especially real-time data (ex: Voice over IP)
Micromobility protocols
- Complement Mobile IP
- Improved support for “local” handoffs
Micromobility (cont.)

- Micromobility protocols
 - Complement Mobile IP
 - Improved support for “local” handoffs

![Diagram showing Micromobility protocols]

- Incoming Message
- Home Agent
- Foreign Agent
- User
- Access Points
Paper Overview
Paper Overview

- Compare micromobility protocols
 - Cellular IP
 - Hawaii
 - Hierarchical Mobile IP (HMIP)

- Develop general protocol model

- Analyze design and performance tradeoffs

- Simulate protocol behavior
 - Focus on handoff performance
• Protocol performance factors:
 – Layer of operation
 – Movement detection method
 • In band vs. out-of-band signaling
 – Location of routing information
 – Routing information update process
 • What happens during crossover?
Protocol Overview

<table>
<thead>
<tr>
<th>Layer</th>
<th>Cellular IP</th>
<th>Hawaii</th>
<th>Hierarchical Mobile IP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3, Network (IP)</td>
<td>3, Network (IP)</td>
<td>3.5, IP Tunnels</td>
</tr>
</tbody>
</table>

- Layer 3, Network/IP
 - Intermediate nodes are MAC/physical layer
 - All devices in micromobility network must be mobility-aware

- Layer 3.5, IP Tunnels
 - Intermediate nodes are IP nodes
Protocol Overview (cont.)

<table>
<thead>
<tr>
<th>Signaling</th>
<th>Cellular IP</th>
<th>Hawaii</th>
<th>Hierarchical Mobile IP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In-band (data packet)</td>
<td>Out-of-band (signaling message)</td>
<td>Out-of-band (signaling message)</td>
</tr>
</tbody>
</table>

- **In-band**
 - Use existing data packets to detect nodes, update routes
- **Out-of-band**
 - Use explicit signaling messages
Protocol Overview (cont.)

<table>
<thead>
<tr>
<th></th>
<th>Cellular IP</th>
<th>Hawaii</th>
<th>Hierarchical Mobile IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing</td>
<td>Mobile-specific routing (reverse path routes)</td>
<td>IP routing w/mobile-specific (location) info</td>
<td>Hierarchical tunneling (GFA sets up tunnels)</td>
</tr>
</tbody>
</table>

- **Mobile-specific routing**
 - Maintain information specific to mobile nodes/routes
 - Are aware that a routing protocol is in use

- **Hierarchical Tunneling**
 - Rely on tree-like hierarchy
Protocol Overview (cont.)

<table>
<thead>
<tr>
<th>Other Features</th>
<th>Cellular IP</th>
<th>Hawaii</th>
<th>Hierarchical Mobile IP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IP paging for idle hosts; hard & semi-soft handoffs</td>
<td>IP paging; 4 handoff types</td>
<td>Gateway FA</td>
</tr>
</tbody>
</table>

- **IP Paging**
 - Allows mobile nodes to enter power-saving mode
 - Provides way to rediscover nodes
- **Handoff algorithms**
 - Hard vs. soft (sudden vs. gradual)
Protocol Summary

<table>
<thead>
<tr>
<th></th>
<th>Cellular IP</th>
<th>Hawaii</th>
<th>Hierarchical Mobile IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>3, Network (IP)</td>
<td>3, Network (IP)</td>
<td>3.5, IP Tunnels</td>
</tr>
<tr>
<td>Signaling</td>
<td>In-band (data packet)</td>
<td>Out-of-band (signaling message)</td>
<td>Out-of-band (signaling message)</td>
</tr>
<tr>
<td>Routing</td>
<td>Mobile-specific routing (reverse path routes)</td>
<td>IP routing w/mobile-specific (location) info</td>
<td>Hierarchical tunneling (GFA sets up tunnels)</td>
</tr>
<tr>
<td>Other Features</td>
<td>IP paging for idle hosts; hard & semi-soft handoffs</td>
<td>IP paging; 4 handoff types</td>
<td>Gateway FA</td>
</tr>
</tbody>
</table>

- **Hierarchical tunneling**: GFA sets up tunnels.
- **IP routing with mobile-specific (location) info**
- **In-band signaling (data packet)**
- **Out-of-band signaling (signaling message)**
- **Mobile-specific routing (reverse path routes)**
Simulation
Simulation Goals

• Simulation of handoff scenarios
 – Module for ns-2

• Evaluation criteria:
 – Packet loss/duplication
 – Routing updates

• Ways to improve handoff process
Simulation (cont.)

- Simulation scenario #1 (tree, hard handoffs):

- Tests effect of crossover distance
• Measured packet loss during crossover
 – Cellular IP & Hawaii vary linearly with distance
 – Hierarchical Mobile IP is constant
 – HMIP: Routing decisions are made at Gateway FA (highest node)
• Measured throughput vs. handoff type

• Hard handoffs
 – Low signaling overhead, but tend to lose packets
 – Cellular IP hard handoff
 – Hawaii UNF

• Semi-soft handoffs
 – Prepare new access point before performing handoff
 – Cellular IP: bi-casting
 – Hawaii MSF: buffer & forward
Simulation scenario #2 (connected tree):

- Tests protocol routing against non-tree topologies
Simulation (cont.)

- Cellular IP
 - Old route
 - New route

- Hawaii (MSF)
 - Old route
 - New route
• Cellular IP
 – Old route
 – New route

• Hawaii (MSF)
 – Old route
 – New route

• Hawaii MSF forms non-optimal routes with non-tree topologies
• ...but it avoids congesting higher level nodes with routing information
Conclusions

• Developed a generic model for micromobility protocols
 – Viewed Cellular IP, Hawaii, and HMIP as instances of this model
• Developed extensions for ns-2 allowing simulation of these three protocols
• Found that location of crossover node is most important performance consideration
Conclusions

• I would add...
 – Provided insight about the handoff problem
 – Identified a potential routing issue with Hawaii (MSF handoff scheme)
 – Laid groundwork for future work relating to security and other practical issues with these protocols
 – Could extend this work to ad-hoc networks (?)
Questions/Comments?