CS 525M - Mobile and Ubiquitous
Computing Seminar

Improving TCP Performance over
Wireless Networks at the Link Layer

Christina Parsa &
J.J. Garcla-Luna-Aceves

Josh Schullman

 TCP interprets packet loss as congestion!

e Transport Unaware Link Improvement
Protocol

— Service Aware, not Protocol Aware

— Half-Duplex oriented

— Stateless!
» Decisions made on a per-destination basis
— Maintains local recovery of all lost packets
 Sliding window
o Lost packet retransmission handled by sender’s link
— Exploits TCP timeouts

e Link-Layer
— AIRMAIL

Sends entire window of data prior to ACK response

Reduces ACK bandwidth consumption, power usage by
mobile device

Must wait for end of window transmission for error
correction; may lead to TCP timeouts

o Split Connection

— Split Source/Base/Mobile Receiver

e Base station buffers, acknowledges packets to source not
yet ACK’ed by receiver. Violates TCP!!!

* Proxy

— Proxy inserted between Sender/Receiver e.g., Snoop

« Packet Sniffer, retransmits packets when detecting duplicate
ACKs.

Reliable Service

— RLP (reliable link-level packet)

o Guarantees in-order delivery w/out duplicates in a
given timeout window

— TCP data + TCP ACK (TACK)

Unreliable Service

— ULP (unreliable link-level packet)

— TACK only
o Assumption: +1 TACKSs in transit

— UDP packet
— Link-level ACK (LACK)

UNIDIRECTIONAL TRAFFIC BIDIRECTIONAL TRAFFIC

A->B B->A
TCP Data TCP Data
2 : 1

A-=R B->A
Data
PET LACKI1
[
!
PKT : TRANS
!

Figure 1. Packet wterleaving over half-duplex link in TULIP from the perspective of source A.

Packet interleaving requires transmission pacing
per link, by maximum propagation delay (t)
At most, one packet in-transit at MAC layer

— TRANS: transmission started
« Send next packet after Dt, time
¢ Dty = toei + 20 + o + 245 + 28 + L

— WAIT: additional time to wait (Dx,)
 Allows self-regulation during bi-di transfer

Transmitter utilizes sliding window (size W)
Sequence numbers assigned modulo 2W
Sender/Receiver maintain buffer pools (W)
UnACKed transmission buffer (sender)
Retransmission list

Defilnition of Termas
ACK = received pkt is an ACK
WALT = RTS received by MAC layer
TRAME = MAC has acqulred channel and
pkt is to be transmitted
macState = 1 if MAC laver has a packet,
0 otherwise
£ om [S'\rnn:{nl e ENmax }
W = window size

Initialization
Initialize SN 0 and SNy ge to 0

[This procedure is called when the sender receives
a signal or LACK packet from the MAC laver|
procedure receivefrom_MAC { incoming-pkt or signal }
begin
switeh paclket or signal type
LACHK:
cancel Timer T4
procezs_received _ack()
Ifi data to sond)
send-packet()
WALT:
cancel Timer T4
zet timer Ty = Ata(RTS dotedength)
TRANS:
set timer T = Aty (rmypoecket length)
mac3tate—0
end procesa_receive_from _MWMAC

Figure 2.

[This procedurs i executed upon timer expiration]
precedure process-timer-cxpirs
begin
if {data to send) AND {macState—==0)
send.packeti)
macState—=1
else
return
and process.timer.expira

proecedure processreceived.ack { incoming-pkt }
begin

if pkt. CumAck £ 5
ENmin = (pkt.CumAck + 1}mod W

end if

if pkt. BitVector = 0
freereceivadopackets [incoming-pkt. BitVector)
create new retrensmission list

end f

and process.received.ack

procedure send_packst { }
begin
if {untransmitted packets remain in Retransmission list)
send next pkt in list
alse if (Window is not exhousted) AND (new pkt available)
if inew pkt is RDFP} AND |5| = W
ENmax = (FNmaax + 1imed 2W
send packet with sn = SNmax
elee if (new pkt us URDP)
send new packet
else it (Retransmission List axists)
ratransmit first pkt in list, i.e. start over
alega (no retransmission list)
retransmit oldest unacknowledged packet
end sendopacket

Complete sender algorithm.

[nitialization
CumACK = -1
BitVector = {0,-- ., 0}

[this procedure is called when a pkt is received]
procedure process_incoming_pkt | incoming_pkt.sn)
begin
if incoming pktsn € {CumACK + 1, ., CumACK + W}
if incoming pkt.sn = {CumACK+1) mod 2W
release to network layer
release any other in sequence packets
for each packet releasad
shift left BitVector
CumACK — LastReleased.sn
elae if packet not in huffer
accept packet into buffer
set corresponding bit in Bit Vector
else
drop packet
réeturn
if (noDataPkt in Queue)
prepare _ACK pkt{ CumACK, BitVector)
send ACK _pkt(sender_address |
else
prepare_PigeyvBack ACK pkti CumACK, BitVector, DataPlkt)
send_PiggyBack ACK _pkt{ sender_address, Piggyback_dgParms)
end if
alse
drop packet
end if
end process_incoming.pkt

Figure 3. Complete receiver algorithm.

R[9)

R[¥]

R[9®]

RiG.L1]

R 1]

R{o%11%]

iy

/
f

- - Ly

2=
ﬁJ

/

.

y
Y/

7
[

A
o

CumACK= 7 [0000...0]

CumACKs § [0000...0)

CumACK= § [0100...0]

CumACK= § [0101,.0
CumACK= 10 [0100, 0] dlost) §(9,10)
ComACK= 12 [0000,.01 losty $¢11.1%)

CumACK= 13 [0000.0] iy

Figure 6. Example of transmission. Window size = §.

Retransmission list
— RI[sn, ... ,sn]

— R[sn?¥]

Bit Vector

— Represents Negative
ACKs

CumACK NJ[0100...0]

. Sequence N+1
NACK’ed

Reduce transmission
delays via cooperative |
TULIP/MAC Interaction o

_cTs

FAMA receives data paTa A >
packet, sends to TULIP o N

TU LI P tf FAMA f F1gure 4. (a) MAC Acceleration: FAMA transmits TULIP data packet
no I IeS O nd returns ACK without another RTS/CTS exchange. Returning TULIP
ACK may contain a TCP ACK. (b) FAMA exchange with large ACK

paC ket payl Oad packet (encapsulated data packet) requires another RTS/CTS exchange.

If size == 0, send ACK

Else if size <= 40, send packet + ACK

Else, send RTS to request channel

Why 40 bytes? Large enough to carry a TACK

Eliminates assumption that all packets are +40
bytes

— In doing so, reduces MAC-level overhead to acquire the
channel

UNIDIRECTIONAL TRAFFIC : BIDIRECTIONAL TRAFFIC

| at,

ACK
) ¢]
T : I

I

I

i PET|: TRANS
! TRANS ! |
i

AR B AesB

a3 >
RTS CTS | r:ﬂ" ; 5 $; RTS | ,crsl DATA

Figure 5. Unidirectional and bidirectional Traffic from the perspective of Node A in a logical link with Node B.

TRANS: acquired channel, data packet about to
be transmitted

WAIT: received RTS (sends source address,
packet size to link-layer)

Implemented TULIP,
Snoop in C++ Protocol
Toolkit

Simulation based on
same source code as
WING prototypes

IEEE 802.11 physical
layer emulation

i

Fp
] 1
‘r_ruf:fﬂ:;r;}{;.} i ‘L

-
5

J -
0 %/

FAMA-NCS

—t

|
[

Broadeast Rodio
{BOZ. 1L 3pech

Figure 7. Protocol stack of wireless node.

Exponential Loss or Fading

Base Station Receiver
I Mbps
1

s
wireless

Figure 8 Topology for Experiments 1-3.

Sequence Number

Sequence Mumber

Throughput with Exp. Error 3.9 bits'milion
)

TR S
; -
// .;ﬂgl_g’.”.,#‘{.. :

/ o I :]

100
Time(sac)

(a)

Throughput with Exp. Error 15 bits/million

TULIF‘/
=

Figure 9. Experiment 1: TCP Sequence number growth. (a) BER =3.9
bits/million = 1/236 Kbytes, (b) BER = 13 bits/million = 1/64 Kbvtes.

Recetver window 42 Kbytes.

Throughput - Low Eror Rates, 42K TCP Window
1

Throwghput (kib's)

| 1 1
0185 026 0.5 1.0 1.85
Bit Error Rate{Bits par milion)

(a)

Throughgput - Low Error Rates, 16k TGP Window

e

Throwghput (kb's)

Il
0125 025 0.5 1.0 1.85 33
Bit Error Rate(Bits per milion)

(b)

Figure 10. Experiment 1: Average throughput for all three protocols
with varying BER. (a) 42 Kbvtes receiver window, (b) 16 Kbvtes recetver

window.

7.8

Table 1 Regular TCP: no Link Layer retransmissions
T T T T

Experiment [Tdeal and achieved goodput, mumber of TCP timeouts and redundant packets transmitted el B ——

— g o ; ACK
over the wireless link for a BER of 13 bits per million and a recerver window of 42 Kbytes, :

Comparsson of goodput for TULIP protocol, Suoop and a0 LL

Saequence Number

Profocal BER Packetloss ldeal Acheved #TCP sredondant

(biymibon) (percent) poodput poodput tmeouts packets

TULP 31 (139 08 0840 0
Stoop 155 0169 081 089 0
NoLL 152 0166 084 08] 158

Thearefical Goodput-——
noLL =e=
TULIE -

Snogp B

Sequence Nurmmber

a1 ; : i
Data Pt Ertor Rate Figure 12. Experiment 1: Sequence number and ACKs at the source for

the first 2 seconds of the TCP transfer. Packets dropped on the chan-
Figure 11. Experiment 1: Goodput for all three protocols with varying ~ nel are shown with arrows. BER = 15 bits per million. (a) No lmnk
packet error rates and a recetver window of 42 Kbytes. retransmissions. (b) TULIP protocol.

TCP: Reund Trip Time, Timeoul, Variance, BERR=15 with TULIP elransmissions

measurad RTT & :
estimate RTT =
, Umaout -

&0
Time{sec)

Figure 13. Expeniment 1: RTT measurement and estunate for TULIP with
a BER of 15 bits/mullion with a recerver window of 42 Kbytes.

Averzge Packet Delay and std. deviation, 42K TCP Window

TULIP pht delay +—
Snocp pld delay ----

Ty

e —

—— 4
———

mmmmm—p

D.IIES D.IES UTE 1!0 1.;35
Bit Error Rata({Bitz per million)

(a)

Average Packet Delay and std. deviation, 16K TCP Window

.
o

TULIP pkt delay —
Snoop pht dalay -

Srasdanmmmal

I

|
a4
i

i ﬂ;

025 05 10
Bit Error RatelBits per million)

(b)

Figure 14, Experiment 1: Average packet delay and std. deviation for
TULIP and Snoop protocols. (a) Recetver window 1s 42 Kbytes. (b) Re-
cerver window 15 16 Kbytes.

- T=—cp——
]

Len
L]

Throughput - High Error Ratas, 42K TCP Window

Throughput (kbis)
-8388EE8EEES

R e
+- -n""‘_"—-u-q:uu g
VR PRttt

g .;m,.n b d
35 50 60 B 70 75
Bit Error Haﬁe(ﬂuta par rnillmn}

(3)

Throughput - High Error Rates, 164 TCP Window

500
450 Fr
400
350
300
280
200

Throughput (Kevs)

2

46 60 55
Bit Error Rate(Bits per million)

(b)

Figure 13 Average throughput for all three protocols with high error rates.
(a) 42 Kbyte window, (b) 16 Kbyte window.

Avarage Packet Delay and std. deviation, 42K TCP Window

Snoop =i
Snoop wilix +
noLl F—

[—
-

IESTEEm—-

0 45 5
Bt Error Rate{Bis par million)

(a)

Average Packet Delay and std. deviation, 42K TCP Window
I | I 1
TULIP-—t '
Snoop Wy 1o

Time{msao)

|
40
Bit Error Rate(Bits per millian)

(b)

Figure 16. Expeniment 2: Average packet end-to-end delay and std. de-
viation with high error rates and 42 Kbyte receiver window. (a) Snoop.

Snoop w/fix. and no LL, (b) Snoop w/fix and TULIPR.

Average Packet Delay and std. deviation, 16K TCP Window

3“&4:13 —i
Snoop wiix -
noll &

Timeimseac)

T T

=

Bit Error Rate{Biz per million)

(a)

Average Packet Delay and sid. devialion: 165 TCP Window

TULIP i
Snoop willy a— |

Tima{msac)

Bt Emor Rale{Bite par million)
(b)

Figure 17. Experiment 2: Average end-to-end packet delay and std. de-
viation with high error rates and 16 Kbyte recetver window. (a) Snoop,

snoop w/fix and no LL, (b) Snoop wiix and TULIP.

TULIP: Burst of 6 pkl losses Throughput - Markov Fading Model, 2kméhr.. 16K TCP Window

pr T

! 1 L] I |]
sending +— S Tr + |
relrafs -+ Snogp -+
B L s O T T, —
el i NORPUN —— \

Sequeence Mumber

&
P
e

P

0.1 1 10
L L i Eit Error Rate in Good State (bits/million)

1 166 11 115
Time(sec) (a)

(a)

Average Detay and Deviation - Markov Fading Modsl 168K TCP Window

— — — — T
Snoop: Burst of 6 pRl losses i

T T l f T T TYLUF —i

S‘Sﬂﬂh‘:g —— : : Snoop Wiy —-:

retiang === I %] § F?U_ [
TACK e !

dropped

Time{msec)

il
0

Sequence MNumber

0.1 1 10
Bit Error Rate in Good State(Bits per million)

(b)

0.9 1 1.05 11 115
Time(sec)

{b) Figure 19. Expermment 5b: TULIP and Snoop protocols duning Markov

fading model. Loss probability in bad state 1s 50% and BER 1n good state

1s varied. Pedestrian speed 2 km/h. (a) Throughput, (b) end-to-end delay
and standard deviation.

Figure 18. Expeniment ja: Burst loss of 6 packets. (a) TULIP, (b) Snoop.

Experiment Ja: Throughput of TULIP and Snoop 1n the presence of bursts of length 2, 4 and 6 packets. Burst periods are

distributed every 64 Kbytes of data. Recerver window 15 42 Kbytes.

Bursts distributed every 64 Kbytes

Burst size
#packets

TULIP Snoop A TULIP Stoop
throughput (Kbps) throughput (Kbps) (Kbps) delay + dev. (ms) delay £ dev (ms)

2

5873 362.6 247 540 £ 56 582+ 601
550.0 5276 224 39+ 74 621 £ 84 1

5316.1 496.4 19.7 618 £ 98 660 £ 114

"ULIP successfully hides packet loss from
CP
"ULIP proves to be more successful at

reducing timeouts due to varying BERS
than Snoop

Exploits normal link-MAC layer interaction
— Reduces bandwidth consumption, etc.

Last but not least, STATELESS!!!

— Lends itself to be extremely scalable, since it is
essentially TCP-version independent

