CS 525M – Mobile and Ubiquitous Computing Seminar

Ioanna Symeou
Satellite-Based Internet: A Tutorial
Yurong Hu and O.K. Li University of Hong Kong
IEEE Communications Magazine, March 2001b
Satellite-Based Internet: Introduction

- Internet!!!
- Why new technologies?
 - Growth (applications & hosts)
 - New QoS requirements
 - Mobility
- Why satellite?
 - Global coverage
 - Broadcast capability
 - Bandwidth on demand flexibility
 - Mobility support
- Satellite networks can be: Broadband access networks, high-speed backbone networks, communication links.
- Challenges of interoperation of satellite systems and terrestrial Internet infrastructure
Satellite-Based Internet: Fundamentals

- Satellite system: Gateway Stations (GS), Network Control Center (NCC), Operation Control Center (OCC)
- Satellite types:
 - Geostationary Orbit (GSO): 35’786 km above equator synchronized with Earth’s rotation, covers 1/3 of Earth, RTD of 250-280ms
 - Medium Earth Orbit (MEO): 3’000 km above Earth, RTD of 110-130ms
 - Low Earth Orbit (LEO): 200 – 3’000km above Earth, RTD of 20-25ms
 - MEOs and LEOs require smaller antennas and less transmission power than GSOs but more satellites are needed to cover Earth.
Satellite-Based Internet: Fundamentals

- Satellite Payload:
 - Simple and robust
 - Bent pipes: No onboard processing (OBP)
 - OBP payloads: Demodulation/redemodulation, decoding/recording etc
 - High-capacity intersatellite links (ISLs)

- Frequency Bands:
 - C band (4-8GHz)
 - Ku band (10-18GHz)
 - Ka band (18-31GHz)
Satellite-Based Internet: Architectures

- Many options due to various satellite systems, orbit and payload types.
- Bent-pipe architecture
 - Low spectrum efficiency and long delay
- Inter-satellite links
 - Routing issues
Satellite-Based Internet: Architectures

- Two previous architectures used interactive terminals which are expensive in satellite systems.
- Asymmetric architecture
 - Unidirectional routing
Satellite-Based Internet: Technical Challenges

Multiple Access Control (MAC)

- Long latency and limited power resource in satellites constrain choices of MAC protocol.
- Protocol must be: simple, robust, support priorities, flexible, achieve high throughput, maintain channel stability, low overhead, small delays
- Fixed assignment protocols:
 - Frequency division multiple access (FDMA)
 - Time division multiple access (TDMA):
 - Like FDMA, each station has dedicated channel, contention free, provide QoS
 - No interference (one user accesses transporter)
 - Code division multiple access (CDMA):
 - Code sequence assigned to users
 - Use of whole bandwidth (flexibility for system expansion)
Multiple Access Control (MAC) 2

• Random access protocols:
 – Due to increased number of users and bursty traffic fixed assignment replaced by random access
 – Random transmissions ignoring other stations
 – Collisions and retransmissions increase delays and decrease throughput

• Demand assignment protocols:
 – Random access makes no QoS guarantees
 – Dynamically allocate bandwidth based on requests
 – Reservation can have centralized or distributed control, can made explicitly or implicitly
 – Some mechanisms: PODA, FODA (implicit and explicit reservations), CFDAMA, CRRMA, RRR (unreserved resources assigned to other stations after reservation)
Satellite-Based Internet: Routing Issues

• Dynamic topology:
 – Two handover types (intersatellite, interbeam)
 – Two ISL types (intraplane, interplane may change)

• Discrete-time Dynamic Virtual Topology Routing
 – Period time divided into time intervals
 – Topology remains the same within one interval
 – Routing tables retrieved when topology changes

• Virtual Node Routing
 – Hide topology changes from protocols
 – VNs keep state info of users
 – VNs represented by different satellites as topology changes
 – Routing decisions based on virtual topology
Satellite-Based Internet: Routing Issues (2)

- **IP Routing**
 - Based on VN routing
 - Variable-length packets, scalability of routing tables, computational & processing capacity limitations

- **ATM Switching**
 - ATM version of DT-DVTR
 - All virtual channel connections between satellites grouped into a VPC
 - Onboard switching according to VPC labels
Satellite-Based Internet: Routing Issues (3)

- External Routing Issues
 - Terrestrial Internet should not know details of satellite system: Satellite system is an AS
 - Space-based BGs: Too much computational load and storage requirements for satellites
 - Terrestrial BGs: Extra round trip delay but more realistic
Satellite-Based Internet: Routing Issues (4)

- Unidirectional Routing
 - Static routing
 - Routing Modification
 - Send-only interface: feeder
 - Receive –only interface: receiver
 - Receivers filter update messages to identify potential feeders and vice versa
 - Tunneling
 - Virtual bidirectional tunnel set up between user and DBS
 - Packets are encapsulated/decapsulated at end-points
Satellite-Based Internet: Satellite Transport

- TCP/IP and UDP/IP affected by delays and errors
- TCP performance
 - Slow feedback, false timeouts and retransmissions
 - Very slow start!
 - TCP can’t differentiate between corrupted data and packet loss due to congestion
 - Network asymmetry affects ACK transmissions
 - Fairness issue
- Performance Enhancements
 - TCP selective acknowledgment
 - TCP for transaction
 - Persistent TCP
 - Path maximum transfer unit
 - FEC
Satellite-Based Internet: Satellite Transport (2)

- TCP extensions can’t solve problems like long end-to-end delays and asymmetry

- Split TCP connections at the GSs
 - TCP spoofing
 - GS isolate divided connections and send spoofing ack’s
 - TCP splitting
 - Web caching
 - Web cache splits connection
 - Users connected to cache don’t need to set up TCP connections if required data are cached

- Satellite Transport Protocol
 - NACK
Satellite-Based Internet: Conclusion

• Possible architectures

• Technical issues

• Research issues:
 – IP QoS:
 • ATM based QoS
 • MPLS
 – Traffic and congestion control