CS 525M – Mobile and Ubiquitous Computing Seminar

Fan Wu

IEEE 802.11 Wireless Local Area Networks

Attributions

- Title: "IEEE 802.11 Wireless Local Area Networks"
- Authors: Brian P.Crow, The MITRE Corporation
 Indra Widjaja, Fujitsu Network Communications
 Jeong Geun Kim, University of Arizona
 Prescott T. Sakai, Cypress Semiconductor
- Pubilshed in "IEEE Communications Magazine", Sep. 1997

Why WLAN?

- Providing high bandwidth to users in a limited area
- Physical and environmental necessity
- The operational environment may not accommodate a wired network

Challenges and Constraints of WLAN

- Frequency Allocation
- Interference and Reliability
- Security
- Power Consumption
- Human Safety
- Mobility
- Throughput

Two WLAN standards

- High-Performance European Radio LAN
 - European Telecommunications Standards Institute(ETSI)
 - Transmission data rates up to 23.529 Mb/s
- IEEE 802.11 WLAN
 - IEEE
 - Transmission data rates 1 Mb/s with optional support for 2Mb/s

IEEE 802.11 WLAN (MAC Schemes)

- Distributed Coordination Function (DCF)
 - Similar to traditional legacy packet networks.
 - Support asynchronous data transmission: email, file transfer etc.
- Point Coordination Function(PCF)
 - Based on polling that is controlled by access point (AP)
 - Support delay-sensitive data transmission: packetized voice and video

Architecture

Ad hoc Network (DCF)

■ Figure 1. Sketch of an ad hoc network.

Architecture Cont.

Infrastructure Network (DCF and PCF)

■ Figure 2. Sketch of an infrastructure network.

Physical Layer

- Frequency hopping spread spectrum(FHSS)
 - 2.4 GHz ISM Band
 - Two level Gaussian frequency shift keying for 1Mb/s
 Four level Gaussian frequency shift keying for 2Mb/s
- Direct sequence spread spectrum(DSSS)
 - 2.4 GHz ISM Band
 - Differential binary phase shift keying for 1Mb/s
 Differential quadrature phase shift keying for 2Mb/s
- IR
 - Wavelength range from 850 to 950 nm
 - 16-pulse position modulation for 1Mb/s
 4-pulse position modulation for 2Mb/s

Medium Access Control Sublayer

Management Frame

Station Association and disassociation with AP, timing and synchronization and so on

Control Frame

Handshaking during Contention period(CP), end the contention- free period(CFP)

Data Frame

Medium Access Control Sublayer

■ Figure 3. Standard IEEE 802.11 frame format.

Distributed Coordination Function(DCF)

■ Figure 5. Transmission of an MPDU without RTS/CTS.

Distributed Coordination Function(DCF)

■ Figure 6. Transmission of an MPDU using RTS/CTS.

Distributed Coordination Function(DCF)

Figure 7. Transmission of a fragmented MPDU.

Point Coordination Function(PCF)

■ Figure 8. Coexistence of the PCF and DCF.

Point Coordination Function(PCF)

■ Figure 9. PC-to-station transmission.

Point Coordination Function(PCF)

■ Figure 10. Station-to-station transmissions.

Simulation Model

- The effect of propagation delay on the model are neglected
- The basic rate of 1Mb/s was simulated for the DSSS.
- No stations operate in the "power-saving" mode
- No interference is considered from nearby BSSs reusing the same DSSS spreading sequence

Ad hoc network model

	Tripial raise
Data stations	10
Average MSDU length	1000 octors
Ensemick rate	4 1/105
BER _{defed}	1970
	3043
β	4014
RTS Thresbold	250 ozte6
Fragmostation Threshold	800 actets
Short Retry Limit	3
Long Retry Limit	7
D953 greamble	184 bits
©555 heads)	SER BATES
Station huffer size	390 frames
Stor Time	20 ns
5IFS Time	40/gs
DES Times	50 us

■ Table 1. Default autribute values for the ad hoc network unless otherwise specified.

Infrastructure network model

	Avintal value
BBRan	
Number of voice stations	10
Voice transmission sate	54 th/s
Voice station buffer tize	190 Frames
CFP Max Duration	4.39 %
CEP Hepatinon Interval	
RIES Trine	3 0 :4**

■ Table 2. Default antibute values for the infrastructure network unless otherwise specified.

Ad hoc network

■ Figure 11. Burst error effects on data throughput.

Ad hoc network

■ Figure 12. RTS_Threshold effects on data throughput.

Ad hoc network

■ Figure 13. Fragmentation_Threshold effects on data throughput.

■ Figure 15. Complementary cumulative distribution for voice delay.

■ Figure 16. Effect of 1_{voice} on data throughput.

■ Figure 17. Data throughput vs. offered load for several values of k.

■ Figure 18. Effect of k on voice delay.

■ Figure 19. Effect of voice stations on voice delay.

Conclusion

- The MSDU length is set to 800 octets, the RTS_Threshold is set to 250 octets
- Pack voice systems must employ an echo canceler
- Compromised performance for both data and voice payload length is approximately 200 octets long.
- When a voice does not have any data to receive and transmit during a poll, the station should be dropped from the list immediately (k=1)