CS 525M — Mobile and Ubiquitous
Computing Seminar

Bradley Momberger




e Attributions

— Title: “The Evolution of Coda,” 2002.

— Author: M. Satyanarayanan, Carnegie Mellon University

— Published in “ACM Transactions on Computer Systems,”
May 2002.




Coda is a robust networked file system
Coda has several features that ensure high availability

Redundancy across several servers
Local caching for clients
Disconnected and weakly connected operation

Transactions and conflict resolution

Coda has additional features inherited from prior filesystem
projects

— Location-independent namespace
— Sophisticated access control

— Implementation as a user-space runtime




Andrew File System, or AFS, is the precursor to Coda.
Key Features
Client/server model
Universal namespace for files: /afs/site/top level/...
Directory-level access control lists: “rlidwka” format
Client-side caching of full files

User-level implementation, with Venus caching client.

AFS shares these core elements with Coda, but lacks
Coda's redundancy across servers or clients.

W orst-case scenario: In a networked environment, a user's
home directory across all servers is stored on AFS, and the
containing volume becomes temporarily unavailable.

The avalilability problem of AFS was the original impetus for
developing Coda




 Two schools of thought for server replication

— Pessimistic Replication: Ensure consistency of files
across all servers before allowing updates.

e Guaranteed to behave as a local, single-user file
system for updates

 Will lock files as long as file replicas are inconsistent.

— Optimistic Replication: (Used by Coda) Provide client
availability despite inconsistency concerns.

« Resolve conflicts after inconsistent updates.
e Transaction logs as the primary vehicle of resolution

 Coda uses optimistic replication; the designers were
primarily concerned with high availability of files.




o Optimistic replication on read:

— Client grabs copy from one volume server, but checks
version status of file on all volume servers.

— Resolve conflict at server level before completing read
request.

o Optimistic replication on write:

— Client moves status and file data to each server in
parallel, and receives a datagram in return. (COP1)

— Client then returns to all servers the list of servers that
returned the datagram. (COP2)

— Discrepancy between versioning can then be resolved
between the servers based on transaction history




e Optimizations

— COP1 (update) phase done in sequence, but COP2
(verification) is done asynchronously after control is
handed back to user.

— RPCs to Coda servers are handed out in parallel
fashion; all COP1 requests are done simultaneously.

e Transaction control

— When servers in the Volume Server Group (VSG) are
disconnected, they use a transaction control method to
log updates to server data structures.

— Transaction control is implemented in a lightweight

library developed in-house, called Recoverable Virtual
Memory (RVM).




e Disconnected Operation

— Server replication is not useful when the client is
disconnected from the network completely

e Also in the case that all servers in the VSG falil.

— The need for a client to work without server access Is
essential to Coda's applicability to mobile computing.

« A mobile device will often be out of service range, or
have little to no connection to the VSG.

e Mobile devices conserve energy though limiting
network connections.

In Coda, no distinction is made between involuntary and
voluntary client disconnections.

— This aids in Coda's applicability to mobile computing.




 Three stages of disconnected operation

— Hoarding (connected state)

e Coda caches files locally using a combination of a
standard LRU policy and user assistance through a
Hoarding Database (HDB).

— Emulating (disconnected state)
e VVenus acts as the Coda file server.

e Cache misses on read are treated as filesystem
failures

« Updates are logged in the Client Modification Log
(CML)

— Reintegrating

* Per-volume repopulation of file data on Coda servers.




e Conflict Resolution

— Because of disconnected operation, files in a Coda tree
cannot be assumed to have consistency across all
clients and servers.

— The chance of a file having a version fork is small but
nonzero. (~0.25% assuming daily cache update)

— In the case of directory structure conflicts, Coda servers
handle conflict resolution without user intervention.

 Use CML when resolving disputes after disconnected
operation

 Use RVM when resolving disputes across servers.

e One server in the VSG appointed as the resolution
coordinator merges the available logs and sends the
merged log back to the other servers.




e Conflict resolution (continued)

 Inthe case of file conflicts, two possible methods exist for
resolving conflicts.

— A Coda-aware application can use the application-
specific resolver (ASR) framework to resolve its own file
conflicts, based on file data, without user intervention.

— If the ASR fails or there is no ASR, Coda alerts the user

by representing the conflicting file as a dangling symlink.
When the user Initiates the recovery process, he is able
to see each server's copy of the file and choose the
correct one.




W eakly Connected Operation

— Weak connection, for example remotely via modem or
over a cellular network, is beneficial to minimizing
version conflicts and data loss.

Ideally, provisions for weak connection would not be
necessary, but the limits of mobile devices force the
ISsue.

Performance degradation, especially for strongly
connected clients, iIs a major issue in receiving updates
via weak (i.e. slow, impermanent) connections.

e Synchronization with updates from weak connections
would cause long unavailability periods for strong
connections.




« Weak updates in Coda have two helper features:
— Volume level hashing for rapid validation

e Before doing any validation on the individual files in a
volume, do a validation of the entire volume to see if
you need to validate files.

— Trickle Reintegration

 Replace the “Reintegrating” phase mentioned before
with a “Write Disconnected” phase.

e During write-disconnected phase, set a time to allow
for changes listed in the CML to cancel themselves
out. Initiate updates only after the time has elapsed.

e Break data and transaction uploads into chunks,
sized as large as the connection can feasibly upload
iIn 30 seconds.




Translucent (as opposed to transparent) caching

— Use of simple model and control panel to provide user
with notification of cache issues and connection state

— Control over cache management

o User patience model: predict that based on time
needed to update cache over weak connection, the

user will not want to allow automatic cache
management.

Cache notification GUI: provide the user with a
moderate amount of detail about the state of the
Coda cache (full, updated, conflict, etc).




e Future evolution

— Coda is the filesystem backing Aura, the context-aware
computing project ongoing at CMU.

— Contributions to the Open Source movement.

e Coda source and runtimes freely available

e 1999 Linuxworld Editor's award for file management.
— Ongoing projects

e Primary focus of current Coda development is wide
availability and distribution (http://coda.cs.cmu.edu)

e Ports to other platforms, including Windows

e Using surrogates, like strongly connected user
stations, for proxy cache.




