
CS 525M – Mobile and Ubiquitous
Computing Seminar

Bradley Momberger

The Evolution of Coda

• Attributions

– Title: “The Evolution of Coda,” 2002.

– Author: M. Satyanarayanan, Carnegie Mellon University

– Published in “ACM Transactions on Computer Systems,”
May 2002.

What is Coda?

• Coda is a robust networked file system

• Coda has several features that ensure high availability

– Redundancy across several servers

– Local caching for clients

– Disconnected and weakly connected operation

– Transactions and conflict resolution

• Coda has additional features inherited from prior filesystem
projects

– Location-independent namespace

– Sophisticated access control

– Implementation as a user-space runtime

Prologue: AFS

• Andrew File System, or AFS, is the precursor to Coda.

• Key Features

– Client/server model

– Universal namespace for files: /afs/site/top_level/...

– Directory-level access control lists: “rlidwka” format

– Client-side caching of full files

– User-level implementation, with Venus caching client.

• AFS shares these core elements with Coda, but lacks
Coda's redundancy across servers or clients.

• Worst-case scenario: In a networked environment, a user's
home directory across all servers is stored on AFS, and the
containing volume becomes temporarily unavailable.

• The availability problem of AFS was the original impetus for
developing Coda

Coda: Server Replication

• Two schools of thought for server replication

– Pessimistic Replication: Ensure consistency of files
across all servers before allowing updates.

• Guaranteed to behave as a local, single-user file
system for updates

• Will lock files as long as file replicas are inconsistent.

– Optimistic Replication: (Used by Coda) Provide client
availability despite inconsistency concerns.

• Resolve conflicts after inconsistent updates.

• Transaction logs as the primary vehicle of resolution

• Coda uses optimistic replication; the designers were
primarily concerned with high availability of files.

Server Replication: Key Concepts

• Optimistic replication on read:

– Client grabs copy from one volume server, but checks
version status of file on all volume servers.

– Resolve conflict at server level before completing read
request.

• Optimistic replication on write:

– Client moves status and file data to each server in
parallel, and receives a datagram in return. (COP1)

– Client then returns to all servers the list of servers that
returned the datagram. (COP2)

– Discrepancy between versioning can then be resolved
between the servers based on transaction history

Server Replication: Key Concepts

• Optimizations

– COP1 (update) phase done in sequence, but COP2
(verification) is done asynchronously after control is
handed back to user.

– RPCs to Coda servers are handed out in parallel
fashion; all COP1 requests are done simultaneously.

• Transaction control

– When servers in the Volume Server Group (VSG) are
disconnected, they use a transaction control method to
log updates to server data structures.

– Transaction control is implemented in a lightweight
library developed in-house, called Recoverable Virtual
Memory (RVM).

Coda: Disconnected Operation

• Disconnected Operation

– Server replication is not useful when the client is
disconnected from the network completely

• Also in the case that all servers in the VSG fail.

– The need for a client to work without server access is
essential to Coda's applicability to mobile computing.

• A mobile device will often be out of service range, or
have little to no connection to the VSG.

• Mobile devices conserve energy though limiting
network connections.

• In Coda, no distinction is made between involuntary and
voluntary client disconnections.

– This aids in Coda's applicability to mobile computing.

Disconnected Operation: Stages

• Three stages of disconnected operation

– Hoarding (connected state)

• Coda caches files locally using a combination of a
standard LRU policy and user assistance through a
Hoarding Database (HDB).

– Emulating (disconnected state)

• Venus acts as the Coda file server.

• Cache misses on read are treated as filesystem
failures

• Updates are logged in the Client Modification Log
(CML)

– Reintegrating

• Per-volume repopulation of file data on Coda servers.

Coda: Conflict Resolution

• Conflict Resolution

– Because of disconnected operation, files in a Coda tree
cannot be assumed to have consistency across all
clients and servers.

– The chance of a file having a version fork is small but
nonzero. (~0.25% assuming daily cache update)

– In the case of directory structure conflicts, Coda servers
handle conflict resolution without user intervention.

• Use CML when resolving disputes after disconnected
operation

• Use RVM when resolving disputes across servers.

• One server in the VSG appointed as the resolution
coordinator merges the available logs and sends the
merged log back to the other servers.

Conflict Resolution: Files

• Conflict resolution (continued)

• In the case of file conflicts, two possible methods exist for
resolving conflicts.

– A Coda-aware application can use the application-
specific resolver (ASR) framework to resolve its own file
conflicts, based on file data, without user intervention.

– If the ASR fails or there is no ASR, Coda alerts the user
by representing the conflicting file as a dangling symlink.
 When the user initiates the recovery process, he is able
to see each server's copy of the file and choose the
correct one.

Coda: Weak Connection

• Weakly Connected Operation

– Weak connection, for example remotely via modem or
over a cellular network, is beneficial to minimizing
version conflicts and data loss.

– Ideally, provisions for weak connection would not be
necessary, but the limits of mobile devices force the
issue.

– Performance degradation, especially for strongly
connected clients, is a major issue in receiving updates
via weak (i.e. slow, impermanent) connections.

• Synchronization with updates from weak connections
would cause long unavailability periods for strong
connections.

Weak Connection: Assistants

• Weak updates in Coda have two helper features:

– Volume level hashing for rapid validation

• Before doing any validation on the individual files in a
volume, do a validation of the entire volume to see if
you need to validate files.

– Trickle Reintegration

• Replace the “Reintegrating” phase mentioned before
with a “Write Disconnected” phase.

• During write-disconnected phase, set a time to allow
for changes listed in the CML to cancel themselves
out. Initiate updates only after the time has elapsed.

• Break data and transaction uploads into chunks,
sized as large as the connection can feasibly upload
in 30 seconds.

Coda: Translucent Cache

• Translucent (as opposed to transparent) caching

– Use of simple model and control panel to provide user
with notification of cache issues and connection state

– Control over cache management

• User patience model: predict that based on time
needed to update cache over weak connection, the
user will not want to allow automatic cache
management.

• Cache notification GUI: provide the user with a
moderate amount of detail about the state of the
Coda cache (full, updated, conflict, etc).

Coda: Future Evolution

• Future evolution

– Coda is the filesystem backing Aura, the context-aware
computing project ongoing at CMU.

– Contributions to the Open Source movement.

• Coda source and runtimes freely available

• 1999 Linuxworld Editor's award for file management.

– Ongoing projects

• Primary focus of current Coda development is wide
availability and distribution (http://coda.cs.cmu.edu)

• Ports to other platforms, including Windows

• Using surrogates, like strongly connected user
stations, for proxy cache.

