
Data on Air: Organization and Access
Imielinski, Viswanathan, Badrinath

Randy Chong
CS525mc S04



PDA’s …

•Are almost everywhere…

•At least for the 
technologically-inclined.

Pilot vs. Newton

Clié

2,500,000+ PDA’s Shipped Globally in Q3 2003
http://www.dataquest.com/press_gartner/quickstats/personal.html



Enter the Internet

•We have lots of very portable computers.
•We have a global network.
•We have to keep up with the news, weather, stocks, etc.
•We should use this infrastructure to push content to our PDA’s 
so we can keep up with information from anywhere!



But how are We Going to Do This?

• We must use a protocol.
• But, there is not an accepted protocol for 

such a medium.
• So we must create a protocol.
• The protocol must facilitate the mobility of 

the devices.
– Devices are battery-powered, so power is in 

“short” supply.
– Receiving and transmitting data is expensive.
– Transmitting data is really expensive
– Probability of a mangled/lost packet on a 

wireless network is an order high than that of 
wired network.



Reducing Power Consumption

• Let the PDA transmit data as little as possible.
• Use an asymmetric “pipe” where the downstream 

is larger than the upstream.
– Remember, lots of power required for the upstream.
– Not as much for the downstream.
– Exploit the asymmetry!

• Do not let the client upload at all.
• The transmission of the downstream is handled by the 

server, which can be a powered, stationary computer.



The Crux of the Problem

• Use broadcasting, continuously send content to 
any device that is listening.

– The redundancy helps solve the mangled/lost packet 
issue inherent in wireless communications.

• Receiving content still consumes a 
considerable amount of power.

• Listen only to content that needs to be 
downloaded.

• The best way to do this is via indexing and 
broadcast disks.



Broadcast Disks

• Since content is constantly being broadcast, it is 
as if there is a persistent disk in the airwaves.

• To access data on any disk, we need:
– A reference.
– A file system.
– Or simply an index.



Indices

• A listing of when certain content will be 
broadcast.

• Generally, should be transmitted (at least) at the 
beginning of each broadcast.

• Overhead, which leads to more power 
consumption on the PDA.

• Indices must be optimized to minimize overhead.
• However, indices should also be optimized to 

minimize latency and tuning time.
– Latency is the amount of time elapsed for all of the 

desired content to be retrieved.
– Tuning time is the amount of time that is spent listening to 

the broadcast.



Clustered Indexing

• Optimized Solutions
– Latency_opt gives the lowest latency, but a large tuning 

time.
– Tuning_opt gives the lowest tuning time, but a large 

latency.

• (1, m) Indexing
– Transmit the entire index m times for each broadcast.
– Each data “bucket” contains a pointer to the next index 

transmission.
– Procedure

• Tune in and get the pointer to the next index.
• Sleep until the next index is available.
• Retrieve the index and get the pointer to the desired content.
• Sleep until the desired content is available.
• Retrieve the desired content.



Clustered Indexing

• Distributed Indexing
– Instead of sending the entire index multiple times, only 

send the index of the data that will be immediately 
available.

• A tree-type index.
• Minimizes index overhead.

– Three types
• Non-replicated distribution.
• Entire path replication.
• Partial path replication.

– Partial path replication is middle ground for the other two.



Clustered Indexing

• Comparison
– Both (1, m) and distributed indexing have less latency 

than tune_opt.
– Distributed indexing has mush less latency than (1, m).
– Distributed indexing almost achieves the latency of 

latency_opt.
– Latency_opt has the largest tuning time of all of the 

algorithms.
– (1, m) has a tuning time almost the same as tune_opt.
– Distributed indexing has a tuning time is just slightly larger 

than that of tune_opt.



Nonclustered Indexing

• Optimized solutions
– Noncluster_latency_opt provides the best latency but a 

large tuning time for non-clustered indexing.
– Noncluster_tune_opt provides the least tuning time but a 

large latency.

• Nonclustered Indexing Algorithm
– The entire broadcast is divided into meta-segments.
– Meta-segments are further divided into data segments.
– Data segments contain only data buckets of the same 

content attribute.
– The end of each data segment contains a pointer to the 

next available meta-segment that contains a data 
segment for the desired content attribute.



Nonclustered Indexing

• Comparison
– The nonclustered indexing algorithm always has a better 

tuning time than noncluster_latency_opt.
– The nonclustered indexing algorithm has a tuning time 

that is nearly the same as the tuning time achieved with 
noncluster_tune_opt.

– The latency of nonclustered indexing depends on the 
scattering factor.

• If the scattering factor is small, then nonclustered indexing 
has a latency that is almost that of 
nonclustered_latency_opt.



Multiple Indices

• Multiple Indices Algorithm
– Let each bucket in the broadcast have n attributes.
– Attributes with lower values of n are accessed more 

frequently while the attribute with the value n is accessed 
least frequently.

– Divide the broadcast into meta-segments based on each 
attribute.

– Additionally, the buckets of indexed attributes are divided 
into meta-segments as well.

– There are now LOTS of meta-segments in the broadcast 
now.



Conclusions

• “Adding indexes increases the latency but 
provides radical improvement in terms of tuning 
time and consequently improves battery 
utilization.”

• “The resulting latency and tuning time [of 
distributed indexing] is close to the optimum as 
our analyses indicate.”

• Not much concluded on the multiple indexing 
algorithm.



Future Work

• Further analyze the multiple indexing algorithm.
• Implement prototype clients and servers.
• Investigate broadcasting content over sub-

channels ala channels on cordless phone 
system.


