CS 525M – Mobile and Ubiquitous Computing Seminar

Mark Figura
“IrisNet: An Architecture for a Worldwide Sensor Web”

Phillip Gibbons, Brad Karp
Intel Research Pittsburg

Yan Ke, Suman Nath, Srinivasan Seshan
Carnegie Mellon University

Introduction

• IrisNet = Internet-scale Resource-Intensive Sensor NETwork services
 – Doesn’t “IrisNet” sound cool?
• World-wide sensor web
 – UI is like a database
 – Users query the sensor-web for the information they are looking for
 • Parking spaces
 • Coastal conditions
Introduction

- IrisNet will basically do everything
- Alerts – head to the bus stop; A tornado is coming!
- How much time to wait for stamps at the post office
- Where’s the nearest parking space?
- Lost and found – where’s my stuff?
- Watch-my-child-when-I’m-at-work
- Health alerts (watch out for the new flu)
- Homeland defense (watch out for those inbound missiles)
- Many more!
How is this supposed to work?

- Each sensor will retain its own data until it is necessary to transmit – keeps transmission down
- Ability to change sampling rates – don’t sample a lot when nothing is happening
- One single interface for everything – one query tool does parking spaces, coastal oil-spill monitoring, watch-my-child, etc
- Data can be queried from anywhere
- Data integrity / privacy (usually an afterthought)
- Ability to deal with equipment failure
- Ease of writing ‘services’
Writing services

• “A tornado is coming!”
 – Uses many different sensors
• “Is it a nice day today?”
 – Uses many of the same sensors!
• A ‘naïve’ implementation would require redundant sensors
• IrisNet allows the reuse of sensors
 – Cheaper
 – Easier for service authors
 – Provides an interface to sensors that can be queried from multiple services
• Services request processed data
 – Instead of receiving video footage, ask for a time-lapse picture
 – Reduces transmission, power, time
• Data is updated often – traditional database systems are less than optimal
 – IrisNet can deal with this
 – ‘Partition’ database across multiple nodes
 – Local data (barometric pressure in Boston) is stored locally (in Boston)
IrisNet architecture

• Two types of nodes on IrisNet
 – Sensing Agents (SAs)
 • Sensors that implement the IrisNet
generic data acquisition interface
 – Organizing Agents (OAs)
 • Nodes that store a distributed
database of information collected from
one or many SAs
IrisNet architecture

(Note that multiple SAs and OAs can be run on a single computer)
OA architecture

- Each service consists of a number of dedicated OAs.
- Services can share SAs, but not OAs
- Use XML for the database
 - XML provides good structure to the data
 - Another buzzword for the paper
Distributing the database

- Database is partitioned with “a distributed algorithm”
- Use structure of the database along with DNS to locate each node
 - city-Pittsburgh.state-PA.usRegion-NE describes the city of Pittsburgh and can also be registered as a DNS name
 - The Pittsburgh OA’s IP address would be bound to the DNS name
- What about name collisions?
Querying the database

• Distributed nature of the DB makes it difficult to query
 – Send request to the Lowest Common Ancestor (LCA) (look up IP in DNS)
• LCA = the node that is closest to the bottom of the tree, but can still access all data from its children and/or itself
• (querying of siblings and parents are not allowed)
Consistency

- Data in OAs might not be most current
- For example, an SA might monitor for riptides by sending 10-minute time lapse photos to an OA
- If one starts to develop right after a photo is sent to an OA, there will be about 10 minutes of riptide before lifeguards are notified
- Also, if there is only a small change, data might not be transmitted to cut down on transmissions = energy, time
SA architecture

- Senselet = program that filters data into a form useful for an OA
- Protection from buggy or malicious senselets
 - Each senselet runs as its own process
 - Protected memory is great and all, but this is **not any** protection from malicious senselets!
 - Limit resource usage
 - Doesn’t solve the problem either – they’re malicious after all!
• Privacy
 – Privacy filters remove identifying information
 – ie. Put black boxes over faces and license plates

• Shared memory pools
 – Senselets can work together
 – ie. Many audio-based senselets might have to do a FFT on the audio data. If one senselet does it, other senselets can use it
Cool stuff - parking

• Tested on a mock-parking-lot with Matchbox cars
• Allows queries that include constraints on the parking space – handicapped, covered, etc
• Uses Yahoo! Maps to get directions to the parking spaces
Cool stuff - IrisLog

PlanetLab (AKA “US-and-Eastern-Europe-College-Lab”)

• PlanetLab allows monitoring of computer usage through Ganglia
• IrisLog supports all Ganglia queries and more
• Integrated into PlanetLab
• More efficient thanks to the “distributed algorithm”
Cool stuff – Coastal imaging

- Time-lapse photos are useful for detecting sandbars

10 minute time lapse photo constructed from a video camera near Oregon State University
Paper’s conclusions

• In the past, sensor network research has been on creating sensors
• This paper discusses a software architecture for getting information from these sensors once they’re deployed
• “While IrisNet represents an important first step … [i]mportant policy, privacy, and security concerns must be addressed before rich sensors can exist pervasively at a global scale.”
My conclusions

Hang on... We must be doing something wrong...
How does the saying go again?
My conclusions

• This is not necessary yet?
 – It will be a while before sensors are ubiquitous
 – Other new technologies will be invented at that point
 – Don’t hold back 2030(?) sensor technology with 2003 software paradigms

• That being said…
 – It is important that these things are thought about before sensors are deployed!
My conclusions

• Most topics in the paper aren’t anything novel
 – A description of the “distributed algorithm” for partitioning databases might have been interesting
 – However, it’s pretty obvious that something like a query-able distributed database will be involved in a global sensor-web
• SA / OA – interesting extension of OOP to sensors / databases
 – By the time we have sensors everywhere, another programming paradigm might be more popular / better?
• Paper authors just trying to get their names out there?
My conclusions

• In summary…
 – Of course it’s necessary to have a nice software architecture to go along with the hardware sensor deployment
 – Right now, we don’t need this
 • Parking space finder
 – Neat tool, but it doesn’t need IrisNet
 – Such varied tasks such as “inbound missiles!” “find a parking space” and “watch my child” would be awkward on a single interface.
 – A fully-developed software architecture should be developed before sensor deployment, but not now
Questions?