CS 525M – Mobile and Ubiquitous Computing Seminar

Emmanuel Agu
Systems issues

• 3 papers:
 – PowerScope
 – CODA
 – Software power saving techniques
• Today, I will talk at the end about projects
Projects

• Timeline/deadlines already discussed
• Today, more details handed out about project proposal
• Today, just talk a little about how to proceed/ideas
• Some thoughts
 – Easiest to start with a paper you read that you like
 – 2 quotes:
 • 6 billion people in the world: lots of people
 • Donald Knuth, building on the shoulders of other giants
 – Find out related work/up-to-date stuff on it
 – Get good picture of what’s been done/not done
 – Since this is a class, can focus on reproducing results of recent variant
A few ideas

• Idea 1: design a WPI enhanced with sensors, ubiquitous computing elements
 – Give nice overview, design, issues, etc
 – Search for free or off-the-shelf tools which you can use for your work e.g. IM, sensors, cameras, etc
 – Update your design using these tools and how you would use them (clear separation between design and implementation)
 – Choose a subset of your design to prototype
• Week 10 paper on context-aware applications in hospital may help
Ideas

- Idea 2: Set up powerscope
 - Profile other applications/workloads
 - E.g. compare energy usage of real player, quicktime, etc
 - Study battery models: predict battery life (spikes, etc)
 - Consider software-only solution of powerscope (i.e. no multimeter, no oscilloscope, etc).
 - Windows already has some energy-related calls
 - Investigate, study academic models
 - Hack!!!
- Some papers also show how to measure energy usage of network card
- Week 12 paper talks about how to and tools for hacking existing wireless LANs
 - Set up these hacks and then measure power usage
Ideas

• CODA paper carefully assumes non-collaborative applications (less than 1% of files shared)
 – All hell could break loose with heavy sharing of collaborative applications
 – Download CODA, set it up, consider collaborative applications

• Simulate 3 different TCP variants
 – E.g. TCP Westwood, week 6
 – Compare their energy consumption
 – **Note:** latest version of NS set up on CS machines

• Broadcast disk paper assumes cute theoretical access patterns with noise
 – Use available traces of data access to stress test broadcast disk
Conclusions

• You should feel comfortable coming up with a wild idea and researching it
• I will write up some of these sample projects and more ideas to help you out
• Important: do something you’ll enjoy, good at