CS 525M – Mobile and Ubiquitous Computing Seminar

Fingertip Cursor Control

by

Jeffrey R. Bacon
Background Info

- Ubiquitous Computing
 - Home Theater PC
 - Electronic Whiteboards
- User Interface
 - “A good tool is an invisible tool. By invisible, I mean that the tool does not intrude on your consciousness; you focus on the task, not the tool.” – Mark Weiser
- No mouse!
 - Environment is unsuitable
 - Can’t have dozens of mice in a room
Project

- Goal:
 - Cursor control using fingertips
 - Simple Point-and-Pinch gesturing
- Constraints:
 - Commodity hardware ("commodity" meaning "cheap")
 - Color recognition
 - Budget: $0
Outline

• Architecture
• Program
 • Environment
 • Pre-Processing
 • Matching
 • Filtering
 • Location
 • Translation
• Results
 • Program Features
 • Algorithm Descriptions
 • Conclusion
Multiple phases to recognition process

- Environment (Input)
- Pre-Processing
- Matching
- Filtering
- Location
- Translation (Output)
Environment

- Description:
 - Webcam
 - Colored Finger Caps
- Discoveries:
 - What we see is NOT what camera sees
 - Immense noise & color problem
 - Must be large or close, or else blocks are indistinguishable from noise
- Future Work:
 - Better camera settings & environment
 - More unique identifiers (LEDs, luminescent paint, etc)
Pre-Processing

- **Description:**
 - What is done before any kind of recognition is done

- **Successful:**
 - RGB Color to HSB Color

- **Unsuccessful:**
 - RGB Blurring (expensive & ineffective)
 - HSB Blurring (expensive & ineffective)

- **Future Work:**
 - Noise Reduction
 - Other Color Encoding Schemes
Matching

- Description:
 - Identifying pixels that are the appropriate color or similar
- Successful:
 - Accuracy Scores
 - Multiplicative accuracy ($H \times S \times B$)
- Unsuccessful:
 - Range matching
 - Additive accuracy
 - Blurred accuracy
- Future Work:
 - Better recognition methods
 - Combinations of methods
Filtering

- Description
 - Altering of matched pixels after matching stage
- Successful:
 - Stray pixel reduction
 - Gap filling
- Unsuccessful:
 - Wide area calculations
- Future Work:
 - Faster methods
 - Larger radius survey
 - Based on accuracy
Location

- Description
 - Identifying location of cursor based on matched pixels
- Successful:
 - Cluster detection
 - Average of all pixels in cluster
- Unsuccessful
 - Banding peaks
Translation

- Description:
 - Translation of data to cursor actions

- Successful:
 - Jitter reduction by weighted averaging
 - Weighted distance averaging
 - Point-and-pinch gesturing
 - Boundary frame

- Unsuccessful:
 - Jitter reduction by plain averaging

- Future work:
 - Better jitter-reduction
 - Other gestures
Program Features

- Image Filters
 - HSB Matches
 - HSB Color Codes
 - Identified Pixels
 - Filter results (strays & gaps)
 - Clustering Information
 - Channels
- Adjustments
 - Camera Adjustments
 - Tolerance Adjustments
 - Recognition Adjustments
- Display
 - Numerical Information
 - Extra visual data
Algorithm Descriptions

- Algorithms:
 - Pre-Processing: RGB Color to HSB Color
 - Matching: Accuracy matching
 - Matching: Tolerance matching (failed)
 - Filtering: Stray reduction / gap filling
 - Location: Cluster identification
 - Location: Banding peaks (failed)
 - Translation: Jitter reduction
 - Translation: Cluster distances
 - Translation: Screen coordinates
Conclusion

• Color recognition cursor control…
 • Works!
 • … but isn’t ready for prime time
 • … but is fun to play with anyway
• Key issues:
 • Lighting (affects everything)
 • Camera quality (colors, noise)
 • Processing power (may be prohibitive)
 • Configuration (usability issues)
 • Low resolution (low accuracy)
 • Low frame rate (slow response)
Questions?