
Intro to LAN/WAN

Transport Layer (Part III)

Transport Layer Topics

Introduction (6.1)
Elements of Transport Protocols (6.2)
Internet Transport Protocols: TDP (6.5)
Internet Transport Protocols: UDP (6.4) ←

UDP
TCP:
– Connection-oriented
– Reliable, guarantees
– ACKs

UDP:
– Connectionless
– Unacknowledged, best effort
– Basically IP with a short header added

UDP Segments

UDP segments:
– 8-byte header followed by payload

Two ports (source, destination.) identify endpoints
At destination port: UDP pkt arrives, handed to process
Process is associated with port in BIND socket call
In fact: Key difference with raw IP is port associations
with process

UDP header

What UDP Do’s and Don’ts
UDP does no
– Flow control
– Error correction
– Retransmission, dest. process handles this

UDP does:
– Multiplexing/demultiplexing via ports

So, UDP has minimal features, applications do the rest
UDP useful in client-server scenarios
– Short request, short response
– If request or response gets lost, client times out, sends again
– Example: DNS (chapter 7)

UDP Application: Remote Procedure
Call (RPC)

Sending messages to server and getting response is
similar to function call in programming
Both cases: start with one or more parameters, get
result back
Remote Procedure Call (Birrell and Nelson, 1984):
– Attempt to cast interaction with a server as function call
– Benefits: easier network programming
– Example: function get_IP_address(host_name) which sends

IP packet to a DNS server, gets IP address, hides networking

RPC Overview

Overview
– Program on local machines can call functions on a remote

machine
– Simply need to associate local calls to remote implementations
– Networking is hidden

Concrete example?
– Machine 1 calls a procedure on Machine 2
– Calling process on machine 1 hangs till execution on machine 2
– Procedure and parameters sent in forward direction, results

returned in backward direction
– Programmer makes association once, networking is hidden

RPC Overview

Remote calls must resemble and feel like local
Key idea:
– Client procedure bound with small library procedure

on the clien called client stub, which represents server
– Server procedure bound with server stub

RPC Steps

1. Client calls client stub
2. Marshalling: client packing parameters into a

message and makes system call
Key note: client simply makes local call with
same name as remote server implementation

RPC Steps

3. Kernel sends message from client to server
4. Server kernel passes message to server stub
5. Server stub unmarshals parameters, calls server

procedure

RPC Issues

Pointer parameters:
– Pointers are basically reference to memory address
– Local use of pointers no problem, same address
– RPC: client and server different address spaces
– Can limit pointers to call-by-reference
– Call-by-reference fails if pointer to graph or

complex data structure
Other problems:
– Global variables, etc

