Intro to LAN/WAN

Transport Layer (Part I11)




Transport Layer Topics

< Introduction (6.1)

< Elements of Transport Protocols (6.2)

= [nternet Transport
= |[nternet Transport

Protocols: TDP (6.5)

Protocols: UDP (6.4) «—




UDP

= | CP:
— Connection-oriented

— Reliable, guarantees
— ACKs

= UDP:

— Connectionless
— Unacknowledged, best effort
— Basically IP with a short header added




-

UDP Segments

32 Bits

'

Source port

Destination port

UDP length

UDP checksum

= UDP segments:

UDP header

— 8-byte header followed by payload

< Two ports (source, C
< At destination port: UDP pkt arrives, handed t
= Process Is associated with port in BIND socket ca
< |n fact: Key difference with raw IP Is port ass

with process

estination.) identify endpoints

‘V\

/

“\
.&R




What UDP Do’s and Don’ts

« UDP does no

— Flow control
— Error correction
— Retransmission, dest. process handles this

= UDP does:
— Multiplexing/demultiplexing via ports

= S0, UDP has minimal features, applications do the rest

= UDP useful In client-server scenarios
— Short request, short response 4
— If request or response gets lost, client times out, s |
— Example: DNS (chapter 7)




UDP Application: Remote Procedure
Call (RPC)

< Sending messages to server and getting response IS
similar to function call in programming

< Both cases: start with one or more parameters, get
result back

= Remote Procedure Call (Birrell and Nelson, 1984):
— Attempt to cast interaction with a server as function call
— Benefits: easier network programming




RPC Overview

= Qverview

— Program on local machines can call functions on a remote
machine

— Simply need to associate local calls to remote implementations
— Networking is hidden

< Concrete example?
— Machine 1 calls a procedure on Machine 2

— Calling process on machine 1 hangs till execution o .
J‘Q’.‘

— Procedure and parameters sent in forward direction
returned in backward direction

A
— Programmer makes association once, networking is h dden ~/




RPC Overview

= Remote calls must resemble and feel like local
+ Key Idea:

— Client procedure bound with small library procedure
on the clien called client stub, which represents server

— Server procedure bound with server stub

Client CPU Server CPU
C?i’iﬁﬂt "o /i \
Client A |server
|2 4 j

Operating system Y A Operating system ‘
d
NG
3 S 7
- _J

Network




RPC Steps

Chient calls client stub

Marshalling: client packing parameters into a
message and makes system call

Key note: client simply makes local call with
same name as remote server implementation

Client CPU Server CPU
Cv /5 \
Client A |server
— |2 4 E

Operating system Y A Operating system )
J =
.
; "y
- w,

Network




RPC Steps

Kernel sends message from client to server
Server kernel passes message to server stub

Server stub unmarshals parameters, calls server
procedure

Client CPU Server CPU

p= Client Server,
stub
@‘.\7 " {@

_—— 4

2

-€

Operating system A Operating system

_ 3 y

Network




RPC Issues

< Polnter parameters:
— Pointers are basically reference to memory address
— Local use of pointers no problem, same address
— RPC: client and server different address spaces
— Can limit pointers to call-by-reference
— Call-by-reference fails If pointer to graph or

com
= Qther

— Global variables, etc

problems:

nlex data structure




