
Intro to LAN/WAN

Transport Layer

Transport Layer Topics

Introduction (6.1)
Elements of Transport Protocols (6.2)
Internet Transport Protocols: TDP (6.5) ←
Internet Transport Protocols: UDP (6.4)

Application 1

Socket

socket
interface

user

kernel

Application 2

user

kernel

Underlying
communication

Protocols

Underlying
communication

Protocols

Communications
network

Socket

socket
interface

Figure 2.16Copyright ©2000 The McGraw Hill Companies Leon-Garcia & Widjaja: Communication Networks

TCP/UDP

IP

Ethernet

Physical Layer

TCP/UDP

IP

Ethernet

Physical Layer

TCP
Connection-oriented
Reliable, end-to-end byte-stream
– message boundaries not preserved

Adapt to a variety of underlying networks
Robust in the face of failures (IP: no guarantees)
Break data into segments
Sliding window

TCP Service Model
Sender and receiver create end points (sockets)
One socket may be used for multiple connections
Well-known services at well known port numbers
– FTP (port 21)
– telnet (port 23), etc

Inetd deamon (UNIX)
– listens for all connects (FTP, telnet, etc)
– Forks off new process to handle new connections (at

designated ports)
– Other daemons (FTP, telnet, etc) only active when work to do
– Inetd learns about what ports to use from config. file

TCP Service Model
All TCP connections are
– full-duplex (can send both ways)
– Point-to-point: each connection has two end points
– Does not support multicast or broadcast (need either

different protocol or improvement)
– Multicast (not TCP) protocols used for multicast

TCP Segment Header

TCP Protocol
TCP entitites (sender, receiver) exchange
segments
TCP segment:
– 20-byte header (plus optional part)
– Followed by zero or more data bytes
– TCP software decides size of segments

(fragmentation)
– Segments can be split up or aggregated

must fit into 65,515-byte IP payload
Also networks have Maximum Transfer Unit (MTU), such
as 1500-byte limit on Ethernet

TCP Protocol
Basic protocol uses sliding window
Sender starts timer when it sends data
Receiver can either piggyback ACK or alone
Sender resends if its timer goes off
Subtle issues TCP must deal with:
– Segments can be delayed or arrive out of order

(different routes?)
– In fact, retransmissions may be different byte range

from original

TCP Connection Establishment
Uses three-way handshake (similar to that
previously discussed)

TCP Connection Release
Although connections are full-duplex, think simplex for
connection release
Either end (sender, receiver) can send segment with FIN
bit set
FIN acknowledged, that direction is done!!
Data may continue to flow in other direction
Process repeated in other direction to close
Connection closes when both ends close
Usually two FIN-ACK pairs (4 pkts) to close
May piggyback to reduce packets sent
Two-army problem: if no ACK within set time, close!!

TCP Transmission Policy
•TCP receiver advertises its window size (remaining buffer space)

Window management in TCP.

TCP Transmission Policy

Do not have to send immediately
– avoid many small packets

Some TCP implementations delay pkts, ACKs for
500 msec to see if it can get more “stuff” to send
Nagle’s Algorithm
– only 1 outstanding byte at a time
– fill up, then send
– time delay, then send
– bad for some apps (X - with mouse movements)

Silly Window Syndrome
Sender sends in large chunks
Application reads 1 byte at a time

Fix: receiver only advertises send window when 1/2
full

TCP Congestion Control
Even if sender and receiver agree, still problems

TCP Congestion Control

Sender tracks two windows
“Receiver buffer” via receiver’s window (via
advertisements)
“Network buffer” via congestion window
“Effective buffer” is minimum of receiver and
network
Ex:
– Receiver says “8k”, Network says “4k” then 4k
– Receiver says “8k”, Network says “32k” then 8k

Avoiding Congestion
Network buffer
– starts at 1 segment
– increases exponentially (doubles)
– until timeout or receiver’s window reached
– or threshold (initially 64K), then increases linearly
– slow start (required by TCP, Jacobson 1988)

Internet congestion includes threshold
– linear past threshold (called congestion avoidance)
– when timeout, reduce threshold to half of current

window and restart slow start
can go up

TCP Congestion Control

An example of the Internet congestion algorithm.

TCP Congestion Control Summary
When below threshold, grow exponentially
– slow start

When above threshold, grow linearly
– congestion avoidance

When timeout, set threshold to 1/2 current
window and set window to 1
How do you select timer values?
– Important, since timeouts restrict throughput
– Timer management

Timer Management
Retransmission timer: most important in TCP
Optimal timer setting?
– Too short, too many retransmissions, packets clog up network
– Too long, performance suffers
– Need dynamic algorithm since conditions can change

Want to set timeout to minimal value where segment is
known to be lost (quickly resend)
Generally set timer as a function of Roundtrip (RTT)
So, need estimate of round-trip time (RTT)
– how to get it?

Why can’t you just measure RTT once and fix timeout
timer?

Timer Management
Difficult when much variance

RTT = αRTT + (1-α)M (α = 7/8, M ack time)
α is smoothing function determining contribution of old RTT
+ add variance, don’t update on retransmits

