
Introduction to LAN/WAN

Network Layer

Topics

Introduction (5 - 5.1) ←
Routing (5.2) (The core)
Internetworking (5.5)
Congestion Control (5.3)

Network Layer Design Isues

Store-and-Forward Packet Switching
Services Provided to the Transport Layer
Implementation of Connectionless Service
Implementation of Connection-Oriented Service
Comparison of Virtual-Circuit and Datagram
Subnets

Store-and-Forward Packet
Switching

The environment of the network layer protocols.
fig 5-1

Note: shaded circle indicates carrier’s
equipment

Store-and-Forward Packet Switching

Service to transport layer
Getting packets from source to destination
– may require many hops
– data link layer from one end of wire to another

Must know topology of subnet
Avoid overloading routes
Deal with different networks

Services to Transport Layer
Depend upon services to Transport Layer
Goals
– services independent of subnet technology
– shield transport layer from topology
– uniform number of network addresses, across

LANs or WANS
Lots of freedom, but two factions
– connection-oriented and connectionless

Connectionless
Internet camp
– 30 years of experience with real networks
– subnet is unreliable, no matter how well

designed
– hosts should accept this and do error control and

flow control
– SEND_PACKET and RECV_PACKET
– each packet full information on source, dest
– no ordering or flow control since will be

redundant with transport layer

Connection-Oriented

Telephone company camp
– 100 years of international experience
– set up connection between end hosts
– negotiate about parameters, quality and cost
– communicate in both directions
– all packets delivered in sequence

some might still be lost

– flow control to help slow senders

Implementation of Connectionless
Service

Routing within a diagram subnet.

Implementation of Connection-Oriented
Service

Routing within a virtual-circuit subnet.

Internal Organization

Virtual Circuit
– do not choose new route per packet
– establish route and re-use
– terminate route when terminate connection

Datagrams
– no advance routes
– each packet routed independently
– more work but more robust

Connected Vs Connectionless

Really, where to put the complexity
– transport layer (connectionless)

computers cheap
don’t clutter network layer since relied upon for years
some applications don’t want all those services

– subnet (connected)
most users don’t want complex protocols on their machines

– embedded systems don’t

real-time services much better on connected

(Un) Connected, (Un) Reliable
– 4 classes, but two are the most popular

Summary Comparison

Topics

Introduction (5 - 5.1)
Routing (5.2) ←
Internetworking (5.5)
Congestion Control (5.3)

Routing Algorithms
correctness and simplicity (obviously)
robustness

parts can fail, but system should not
topology can change

stability
fairness and optimality conflict!

Optimality vs. Fairness

What to optimize?
– Minimize delay
– Maximize network throughput
– But basic queuing theory says if system near

capacity then long delays!
Compromise: minimize hops (common metric)
– Improves delay
– Reduces bandwidth, so usually increases throughput

Two Classes of Routing Algorithms
Non-Adaptive algorithms
– decisions not based on measurements
– routes computed offline in advance
– also called Static Routing

Adaptive algorithms
– change routes based on topology and traffic
– info: locally, adjacent routers, all routers
– freq: every ΔT seconds, load change, topology change

Metric?
– distance, number of hops, transit time

Optimality Principal

“If J is on optimal path from I to K, then
optimal path from J to K is also on that path”

Explanation by contradiction:
– Call I to J, r1 and J to K, r2
– Assume J to K has a route better than r2, say r3
– Then r1r3 is shorter than r1r2

contradiction!

Useful when analyzing specific algorithms

Sink Tree
Set of optimal routes to a given destination
Not necessarily unique
Routing algorithms want sink trees

(a) A subnet. (b) A sink tree for router B.

Sink Trees

No loops
– each packet delivered in finite time
– well, routers go up and down and have different

notions of sink trees
How is sink tree information collected?
– we’ll talk about this later

Next up: static routing algorithms
On deck: adaptive algorithms

Static Routing - Start Simple

Shortest path routing
How do we measure shortest?
Number of hops
Geographic distance
Mean queuing and transmission delay
(hourly tests)
Combination of above

Computing the Shortest Path

Dijkstra’s Algorithm (1959)
Label each node with distance from source
– if unknown, then ∞

As algorithm proceeds, labels change
– tentative at first
– permanent when “added” to tree

Dijkstra Example

Make A the source below
Compute shortest paths from A, build table

N B C D E F

Dijkstra Example Solution

N B C D E F
A 2,A 5,A 1,A ∞ ∞
AD 2,A 4,D 2,D ∞
ADE 2,A 3,E 4,E
ADEB 3,E 4,E
ADEBC 4,E
ADEBCF

Flooding
Send every incoming packet on every outgoing
link
– problems?

Vast numbers of duplicate packets
– infinite, actually, unless we stop. How?

Hop count: decrease each hop
Sequence number:
– Track packets seen from any other host
– don’t flood duplicates twice

Selective flooding: send only in about the right
direction

Uses of Flooding
Military applications
– redundancy is nice
– routers can be blown to bits

Distributed databases
– multiple sources
– update all at once

Wireless
– Channel is broadcast in nature, so use this property

Baseline for comparing other algorithms
– flooding always chooses shortest path
– compare other algorithm to flooding

Topics

Introduction
Routing (5.2)
– static
– adaptive ←

The Internet (5.5, brief)
Congestion Control (5.3)

Modern Routing

Most of today’s computer networks use
dynamic routing
Distance vector routing
– Original Internet routing algorithm

Link state routing
– Modern Internet routing algorithm

Distance Vector Routing

Router table entries per destination:
– preferred outgoing line
– estimate of “distance” to get there

Assume knows “distance” to each neighbor
– if hops, just 1 hop
– if queue length, measure the queues
– if delay, can send PING packet

Exchange tables with neighbors periodically

Distance Vector Routing
Computation

Just got Routing Table from X
– Xi is estimate of time from X to i

Delay to X is m msec
Know distance to X (say, from ECHO’s)
– Can reach router i via X in Xi + m msec

Do for all neighbors
Closest to i as “preferred outgoing line”
Can then make new routing table

Distance Vector Example

(a) A subnet. (b) Input from A, I, H, K, and the new
routing table for J.

Good News Travels Fast

Consider figure (a)
A is initially down
Path to A updated every exchange
Stable in 4 exchanges

The count-to-infinity problem.

Bad News Travels Slowly

Consider figure (b)
Sloooowly converges to ∞ (count to infinity)
Better to set infinity to max + 1
Solution: split horizon hack
– Can inform neighbor of ∞ cost (bad news quick!!!)
– doesn’t always work

Topics

Introduction
Routing (5.2)
– static
– adaptive ←

The Internet (5.5, brief)
Congestion Control (5.3)

Review

Each router
– Has finite (small) no. of outgoing lines connected to it
– Has to route to all hosts on the Internet

Router view of the world
– Sees world through routing table
– Routing table: for any given host (IP address), which

outgoing link router should pump it out on
– Routing table tracks only outgoing line, not entire path
– Example: when router receives a packet bound for IP

address 178.157.277.191 in California, routing table
says pump this out on line 6

Review

Routing algorithm: How to create entries on
routing table
Two classes: static and adaptive
Static:
– Each router collects costs of every link on the internet
– Crunch once and determine shortest path to every node

on the internet
– Example: Dijkstra’s algorithm
– Question: since each router has all the costs, why not

just compute all possible paths and choose smallest?

Review

Adaptive:
– Periodically (say every 30 seconds) exchange

routing tables with all neighbors
– Iteratively, learn about changes of costs
– Example: Distance Vector algorithm

Major difference:
– Dijkstra’s algorithm sends neighbor link costs
– Distance vector exchanges entire routing table

Link State Routing
Used (w/variations) on Internet since 1979
Basically
– Experimentally measure distance
– Use Dijkstra’s shortest path

Steps
– Discover neighbors
– Measure delay to each
– Construct a packet telling what learned
– Send to all other routers
– Compute shortest path to every other router

Learning Neighbors
Upon boot, send HELLO packet along point-
to-point line
– names must be unique

Routers attached to LAN?

(a) Nine routers and a LAN. (b) A graph model of (a).

Measuring Line “Cost”
Send ECHO packet, other router returns
– delay

Factor in load (queue length)?
– Yes, if other distance equal, will improve perf
– No, oscillating routing tables
– Ex: Back and forth between C-F and E-I

Building Link State Packets
Identity of sender, sequence number, age,
list of (neighbors + distance)

When to send them?
– Periodically or when cost changes?

Distributing Link State Packets

Tricky if topology changes as packets travel
– routes will change “mid-air” based on new topology

Basically, use flooding with checks
– increment sequence each time new packet sent

Forward all new packets
Discard all duplicates
If sequence number lower than max for sending
station
– then packet is obsolete and discard

Distribution Problems
Sequence numbers wrap around
– use 32 bits and will take 137 years

Router crashes … start sequence number at 0?
– next packet it sends will be ignored

Corrupted packet (65540)
– packets 5 - 65540 will be ignored

Use age field
– decrement every second
– if 0, then discard info for that router

Hold for a bit before processing

Keeping Track of Packets

F arrived
– ack F
– forward A and C

A arrived
– ack A
– forward C and F

The packet buffer for router B in (Fig. 5-13).

Keeping Track of Packets

E arrived via EAB and via EFB
– send only to C

If C arrives via F before forwarded,
updated bits and don’t send to F

Station
B

Computing New Routes
Router has all link state packets
– build subnet graph

N routers degree K, O(KN) space
Problems
– router lies: forgets link, claims low distance
– router fails to forward, or corrupts packets
– router runs out of memory, calculates wrong
– with large subnets, becomes probable

Limit damage from above when happens

Link State Routing Today

Open Shortest Path First (OSPF) (5.6.4)
– used in Internet today

Intermediate Sys Intermediate Sys (IS-IS)
– Designed initially for DECnet
– used in Internet backbones
– variant used for IPX in Novell networks
– carry multiple network layer protocols

Hierarchical Routing
Global picture difficult for large networks
Divide into regions
– Router knows detail of its region
– Routers in other regions reduced to a point

Reduced Routing Table

•Cost is efficiency
•Consider 1A to 5C

•via 3 better for most of 5

