

Introduction to LAN/WAN

Medium Access Sublayer (Part II)

Now, Where Were We?

- Therefore Introduction
- Multiple Access Protocols
- IEEE 802 Standard
 - Ethernet (802.3)
- The Wireless LAN Protocols

J Misc

Ethernet Performance

- Mean frame transmission time, P sec
- Probability that a frame transmits, A
 - (complicated stuff skipped)
- The longer the cable, the longer the contention period
- This is why Ethernet specifies maximum cable length (i.e. put limit on 2τ)
 - Longest allowed path is 2.5km + 4 repeaters ≈ 50 µsecs
 - Minimum frame must allow for at least this
 - At 10 Mbps is 512 or 64 bytes, shortest frame
 - 1 Gbps Ethernet is even longer! (or shorter cable)

Ethernet Performance (cont.)

- Convert previous formula to:
 - Frame length F
 - Network bandwidth B
 - Cable len L
 - Cable propagation speed c
 - (complicated stuff skipped)
- Channel Efficiency = _____
 - 1 + 2BLe/cF
- rightarrow Increasing $B \ge L$ reduces efficiency
- The But everyone wants high-bandwidth,
 - Then they better not use Ethernet

Ethernet Performance and Frame Size

Ethernet Perf Final Thoughts ...

- Lots of theoretical work on Ethernet perf
 all assumes traffic is Poisson
- Turns out, traffic is self-similar
 - averaging over long-periods of time does not smooth out traffic (same variance each time interval)
 - bi-modal (packets are either big or small)
- Take models with grain of salt

Saturated LAN

Set saturated? Add bandwidth ... good idea?

- Expensive to replace cards
- Efficiency
- Instead Switched LANs
- Switch with high-speed backplane with connected cards (typically, 1 Gbps)
- ☞ 4 to 32 plug-in cards
- Each plug in card can support 1 to 8 connectors (computers)
- Can reduce or eliminate contention

Switched LANs

- When receives frame, sees if destined for another on same line, forwards as needed
 - different than hub or repeater
 - Run classic ethernet on same card
 - Proprietary protocol between cards

Fast Ethernet

☞ As 10 Mbps proved too slow, two proposal:

- FDDI (Fiber Distributed Data Interface)
- Fibre Channel (uses crossbar switch)
- FDDI
 - Two fiber rings, one in each direction
 - Token-based protocols (token bus, token ring)
 - Several tokens (packets) in the ring.
 - Station must grab 1 token to transmit
 - Priority tokens based on timers

Fig. 4-45. (a) FDD1 consists of two counterrotating rings. (b) In the event of failure of both rings at one point, the two rings can be joined together to form a single long ring.

Fast Ethernet

- FDDI, Fibre channel too complicated, didn't become LAN
- The Used as backbones, no widespread success
- Made 802.3 committee think tank (in 1992)
 - keep Ethernet, make faster (winner, 802.3u)
 - make new LAN, call Ethernet (802.12) (loser:flopped!!)
- Reasons 802.3 won:
 - Backwards compatible
 - New protocol = new unforseen problems
 - Quicker deployment

Fast Ethernet

- Thange bit time from 100 nsec to 10 nsec
 - all must use hubs
 - shorter "wire-length" to hub
 - Wiring changes
 - Mostly copper (10BaseT) (successful)

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

The original fast Ethernet cabling.

Gigabit Ethernet

- Even faster ethernet!!
- \gg 802.3*z* (*z* indicates the end of the road)
- Design goals:
 - make Ethernet 10 times as fast but backwards compatible (again??)
 - Offer unacknowledged datagram service
 - Same 48-bit addressing scheme
- All configurations are point-to-point

Gigabit Ethernet

- Two modes:
 - Full-duplex
 - Half-duplex
- Full duplex used when a switch is used (b)
- The No contention since line is FD, so no CSMA/CD

Gigabit Ethernet

- Half-duplex used when a hub is used instead of a switch
- The Hub cannot buffer packets, switch can
- Collisions are possible so CSMA/CD
- The Higher bandwidth means shorter longest distance
- Solutions:
 - Carrier extention: stations pad min. frames to 512 bytes
 - Frame bursting: concatenate multiple outgoing streams
- Result: extends network radius to 200 meters

Gigabit Ethernet (2)

- Supports both copper and Fiber
- Manchester encoding at 1Gbps would require
 2Gbaud signal. New encoding used on fiber
- Sew encoding scheme used: 8B/10B
- The Basically encodes an 8-bit byte as 10 bits on fiber

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 $\mu)$
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

Gigabit Ethernet cabling.

IEEE 802.2: Logical Link Control

- So far Ethernet and MAC protocols offer no reliable service (e.g. stop-and-wait, etc)
- IEEE defined LLC to run above MAC to provide these services
- Closely based on HDLC

Ethernet Retrospective

- Been around for over 20 years
- Few technologies make it that long (operating system, architecture, etc)
- Thernet
 - pros: popular, simple, reliable, flexible, cheap
 - cons: non-deterministic, no priorities, min frame size

Now, Where are We?

- Introduction
 Multiple Access Protocols

 contention
 collision-free

 Ethernet
 Wireless LAN Protocols
- Bridges
- Misc (brief)
 - High-Speed LANs
 - Satellite Networks

