

Intro to LAN/WAN

Introduction (contd)

Home Network Categories

- Computers (desktop PC, PDA, shared peripherals)
- Entertainment (TV, DVD, VCR, camera, stereo, MP3)
- Telecomm (telephone, cell phone, intercom, fax)
- Pappliances (microwave, fridge, clock, furnace, airco)
- Telemetry (utility meter, burglar alarm, babycam).

Internetworking

- The connection of different types of networks
- The Internet

Implementing Networks

- Need software abstraction to make hardware convenient
- Complex problem (remember OS?)
 - Where do we start?
 - Divide-and-Conquer!
- Tayer up from hardware
- Only bare amount needed
- Increasingly sophisticated services

Layering Protocol Layer 3 Layer 3 Virtual Communication 3/2 interface 3/2 interface Abstraction Layer 2 Layer 2 Transparency 2/1 interface 2/1 interface Layers and protocols form *network* Layer 1 Layer 1 architecture **Physical Medium**

Design Issues for the Layers

- Addressing
 Error Control
 Flow Control
 Multiplexing
- **Routing**

Network Architecture

Messages

- There are a set of the set of the
- Have maximum size (ex Ethernet 1500 bytes), 100s-1000s bytes
- The secont of the second of the second secon
 - used to synchronize with the remote peer
 - contain "instructions" that tell the remote peer what to do with the message
- The Have data portion
 - arbitrary bytes
 - not of interest in this particular protocol layer

Encapsulation

- Tayer N takes data from layer N+1 (above it)
 - encapsulates entire layer N+1 message in the data portion of the layer N
 - it should never look inside the data portion of the message!
- The When the remote peer receives a message
 - it strips off the header information and passes only the data to the next higher layer

Connection-Oriented and Connectionless Services

☞ Six different types of service (section 1.3.3).

Service	Example
Reliable message stream	Sequence of pages
Reliable byte stream	Remote login
Unreliable connection	Digitized voice
Unreliable datagram	Electronic junk mail
Acknowledged datagram	Registered mail
Request-reply	Database query
	ServiceReliable message streamReliable byte streamUnreliable connectionUnreliable datagramAcknowledged datagramRequest-reply

Reference Models

- The OSI Reference Model
- The TCP/IP Reference Model
- The A Comparison of OSI and TCP/IP
- A Critique of the OSI Model and Protocols
- A Critique of the TCP/IP Reference Model

OSI Reference Model

OSI Reference Model

- Standard attempt
- 7 layers:
 - Physical Layer
 - Data Link Layer
 - Network Layer
 - Transport Layer
 - Session Layer
 - Presentation Layer
 - Application Layer

 Layers self-contained
 Minimize messages across boundaries

Physical Layer

- Transmitting raw bits over a "wire"
 - Make sure a "1" bit is sent as a 1
- @ EE/ECE problem:
 - How many volts represents a "1" or "0"?
 - How long does a bit time last?
 - How many pins does the connector have?
 - How many wires does the transmission media have?
 - Are pulses electrical or optical or waves?

Data Link Layer

- Communication between two machines
- Transforms raw transmission of physical layer into error-free channel
- Divides physical layer physical layer into *frames* messages containing data and control information
- Handles lost, damaged, and duplicate frames (hop by hop)
- Handles slowing down a fast transmitter
 flow-control

Network Layer

- Controls operation of the *subnet*
 - communication between hosts
- Routes *packets* from source to destination
 not guaranteed delivery
- The Handles congestion
 - too many packets in network
- The Handles addressing
 - Which machine?

Transport Layer

- Makes sure data gets delivered to a specific process on a specific machine
- *End-to-end* protocol
 - sender and receiver
- The Handles retransmissions, if needed (End to end)
- The Handles duplicates, if needed
- Also deals with addressing
 - Which process on a particular machine?
 - The *port* specification in a socket

Session Layer

- Long-term connections between processes
- Clean interface to the transport layer
 - Not OS specific (sockets in BSD Unix, or TLI in System V streams)
- Provides synchronization
 - recovering from transport layer failure
 - token for flow control

Presentation Layer

- Apply semantics to data
 - example: name, address ...
- Format in agreed upon way
- General services:
 - Format data (ASCII to Unicode)
 - Compressing data
 - Encryption

Application Layer

- The user programs themselves
 - ftp
 - telnet
 - Web browser
 - Messenger
 - SSH

Critique of OSI

The apocalypse of the two elephants.

