Introduction to LAN/WAN

Data Link Layer (Part I1)

Topics

= |ntroduction
= Errors

< Protocols —
— simple
— sliding window
= Modeling ?
= Examples ?

iy - [y

Protocols Purpose

< Agreed means of communication between
sender and receiver

< Handle reliability
< Handle flow control
= \We’ll move through basic to complex

Data Link Protocols

= Machine A wants stream of data to B
— assume reliable, 1-way, connection-oriented

< Physical, Data Link, Network are all processes

= ASSUME:
— to_physical layer() to send frame
— from_physical layer () to receive frame

— both do checksum
— from_physical layer()reports success o

Frame

< first 3 are control (frame header)
< Info IS data

< Kkind: tells If data, some are just control
< Seq: sequence number
= ack: acknowledgements %
= Network has packet, put in frame’s info

Tanenbaum’s Protocol Definitions

#define MAX_PKT 1024 /* determines packet size in bytes */

typedef enum {false, true} boolean; /* boolean type */

typedef unsigned int seq_nr; /* sequence or ack numbers */

typedef struct {unsigned char data[MAX_PKT];} packet;/* packet definition */

typedef enum {data, ack, nak} frame_kind; /* frame_kind definition */

typedef struct { /* frames are transported in this layer */
frame_kind kind; /* what kind of a frame is it? */
seq_nr seq; /* sequence number */
seq_nr ack; /* acknowledgement number */
packet info; /* the network layer packet */

} frame;

Figure 3-9. Some definitions needed in the protoc
follow. These are located in the file protocol.

Unrestricted Simplex Protocol

< Simple, simple, simple
<+ One-way data transmission (simplex)
= Network layers always ready

— Infinitely fast
= Communication channel error free
+ “Utopia”

Figure 3-10

Unrestricted
Simplex
Protocol

/* Protocol 1 (utopia) provides for data transmission in one direction only, from
sender to receiver. The communication channel is assumed to be error free,
and the receiver is assumed to be able to process all the input infinitely quickly.
Consequently, the sender just sits in a loop pumping data out onto the line as

fast as it can. */

typedef enum {frame arrival} event type;

#include "protocol.h”

void sender1(void)

—

frame s;
packet buffer;

while (true) {
from_network_layer(&buffer);
s.info = buffer;
to_physical_layer(&s);

1 /

——

void receiveri(void)
{
frame r;
event_type event;

while (true) {
walit_for_event(&event);
from_physical_layer(&r);
to_network_layer(&r.info);
}
}

/* buffer for an outbound frame */
/* buffer for an outbound packet */

/* go get something to send */
/* copy It into s for transmission */
/* send it on its way */

* Tomorrow, and tomorrow, and tomorrow,
Creeps In this petty pace from day to day
To the last syllable of recorded time

- Macbeth, V, v */

/* filled in by wait, but not used here */

/* only possibility is frame_arrival */
/* go get the inbound frame */
/* pass the data to the network layer */

Simplex Stop-and-Wait Protocol

< One-way data transmission (simplex)
= Communication channel error free

= Remove assumption that network layers are
always ready

— (or that receiver has infinite buffers)

= Could add timer so won’t send too fast?
— Why is this a bad idea?
= \What else can we do?

/* Protocol 2 (stop-and-wait) also provides for a one-directional flow of data from
sender to receiver. The communication channel is once again assumed to be error
free, as in protocol 1. However, this time, the receiver has only a finite buffer
capacity and a finite processing speed, so the protocol must explicitly prevent
the sender from flooding the receiver with data faster than it can be handled. */

typedef enum {frame_arrival} event_type;
#include "protocol.h"

F i g u re 3_ 1 1 void sender2(void)

{

frame s; /* buffer for an outbound frame */
packet buffer; /* buffer for an outbound packet */
event_type event; /* frame_arrival is the only possibility */

Simplex Stop- wie aue

from_network_layer(&buffer); /* go get something to send */

d W . s.info = buffer; /* copy it into s for transmission */
an - alt to_physical_layer(&s); /* bye bye little frame */
walt_for_event(&event); /* do not proceed until given the go ahead */

Protocol y

void receiver2(void)

{

framer, s; /* buffers for frames */

event_type event; /* frame_arrival is the only possibility */

while (true) {
walt_for_event(&event); /* only possibility is frame_arrival */
from_physical_layer(&r); /* go get the inbound frame */
to_network_layer(&r.info); /* pass the data to the network layer */

to_physical_layer(&s); /* send a dummy frame to awaken sender */

(a) Frame 1 lost Time-out

» time

frame \:rame rame frame
0 1
ACK K

(b) ACK lost Time-out

frame frame rame frame
/ ACK

In parts (a) and (b) transmitting station A acts the same vay
receiving station B accepts frame 1 twice.

Copyright ©2000 The McGraw Hill Companies Leon-Garcia & Widjaja: Communication Networks Figure 5.9)

Simplex Protocol for Noisy Channel

= One-way data transmission (simplex)

= Remove assumption that communication
channel error free

— frames lost or damaged

= Damaged frames not acknowledged
— look as If lost

< Can we just add a timer In the sender?
— Why not? (Hint: think of acks) !

= Positive Ack with Retransmissions (

time-out

<+—>
A frame
0 frame frame frame
0 1 2
i pC ‘ K

, time

Transmitting station A misinterprets duplicate ACKs

Copyright ©2000 The McGraw Hill Companies Leon-Garcia & Widjaja: Communication Networks

>

Figure 5.10 y

PAR

Simplex
Protocol
for a
Noisy
Channel

/* Protocol 3 (par) allows unidirectional data flow over an unreliable channel. */

#define MAX_SEQ 1

/* must be 1 for protocol 3 */

typedef enum {frame_arrival, cksum_err, timeout} event_type;

#include "protocol.h"

void sender3(void)
{
seq_nr next_frame_to_send;
frame s;
packet buffer;
event_type event;

next_frame_to_send = 0;
from_network_layer(&buffer);
while (true) {
s.info = buffer;
s.seq = next_frame_to_send;
to_physical_layer(&s);
start_timer(s.seq);
wait_for_event(&event);
if (event == frame_arrival) {
from_physical_layer(&s);
if (s.ack == next_frame_to_send) {
stop_timer(s.ack);
from_network_layer{&buffer);
inc(next_frame_to_send);

}
}

/* seq number of next outgoing frame */
/* scratch variable */
/* bufter for an outbound packet */

/* initialize outbound sequence numbers */
/* fetch first packet */

/* construct a frame for transmission */
/* insert sequence number in frame */

/* send it on its way */

/* if answer takes too long, time out */

/* frame_arrival, cksum_err, timeout */

/* get the acknowledgement */
/* turn the timer off */

/* get the next one to send */
/* invert next_frame_to_send */

<

\
)

Figure 3-12.A Positive Acknowledgement with Retransmission-protocol. /7

Continued 2 e

A Simplex Protocol for a Noisy Channel

void receiver3(void)

{
seq_nr frame_expected;
frame r, s;
event_type event;

frame_expected = 0;
while (true) {

walit_for_event(&event); /* possibilities: frame_arrival, cksum_err */
if (event == frame_arrival) { /* a valid frame has arrived. */
from_physical_layer(&r); /* go get the newly arrived frame */
if (r.seq == frame expected) { /* this is what we have been waiting for. */
to_network_layer(&r.info); /* pass the data to the network layer */
inc(frame_expected); /* next time expect the other sequence nr */
}
s.ack = 1 — frame_expected; /* tell which frame is being acked */

to_physical_layer(&s); /* send acknowledgement */

Sliding Window Protocols

= Remove assumption that one-way data
transmission

— duplex
= Error prone channel
= FInite speed (and buffer) network layer

Two-Way Communication

= Seems efficient since acks already

<+ Have two kinds of frames (kind field)
— Data
— Ack (seg num of last correct frame)

= May want data with ack

— delay a bit before sending data

— piggybacking - add acks to data frames go
other way

= How long to wait before just ack?

Sliding Window Protocols

<= More than just 1 outstanding packet
— “Window” of frames that are outstanding

< Sequence number is n bits, 21
< Sender has sending window

— frames it can send (can change size): sent but no ACK

— new packets from the Host cause the upper edge inside
window to be incremented.

+ Recelver has receiving window
— frames it can receive (always same size)

Inside window to be incremented
= \Window sizes can differ
= Note, still passed to network layer in order! <=

Sender

-r

Sliding Window, Size 1

1 = 1 = 1 =
Z 5 Z 5 Z 5
.-'"—_

4 3 4 3 | 3
7 @ 7 @ 7 @

1 = 1 & 1 =

£ 5 £ 5 £ 5
4 3 4 3 4 3

(4l b (]

ol

{

1-Bit Sliding Window Protocol

void protocokd [woid)

S0 NF naxt.frame to.send,
S0 Nr frama. ax pactad;
framar s

pac kgt buffar,

avant.ty pa avant;

naxtframe_to_sand =0;
frama g pacted = O;

from_ natweork_ 8 war(a buffar):
5.info = buffar;

55680 = naxt.frama. to_send;
5.8cK = 1 - frama_ax pactad,
to.physical_ B yar(ts);

start. timans.saq),

f*Qor i only «f

f*0or only «f

'* soratch vanablgs «f

{* cumant pachksat baing sant «

f+ neit frame on the outbound straam
{* numbear of frame arnving frama axpactad *
{* fatch & pachkat from the network Byar «f
{* prapara 1o send the intial framea «
f* NS SeqUance numbarinto frame
{* piggybacked ack «
{* transmit the framea *
{+ start the timar running «/
X

(initialization) 3

1-Bit Sliding Window Protocol

whilg [true) |
wait_for_avant]&avant); fx frama_arrval, cksum_arr, or timaout '
T (gvant = frama_arrnval) { /'~ 3 frame has arnvad undamagad. »f
from_physical_Bwer(arn;, f~goget i«

If (rsaq = framea.axpactad) |
f+* Hand ke inbound framea stream. ~
to_natwork_Byer(arinfo);, [/~ pass pachket to natwork Byar =
incifAmagupactad);, [+ invart saquence numbar axpacted naut

I
frack = naxt_frame_to_send) { /~ handle cutbound frame straam. ~
from _network _ Byar(t buffarn; f* fatch naw pkt from natwork @yar =
incinaxd.frame.to_send); /~ inwert sender's saquance numkber «f
I
I
5.info = buffar; i construct outbound frama /!
55080 = naxt_framesto_sand;, fr insert sequance numbearinto it «f
5.ack =1 — frame. s pactad, f* saq numbear of Bst raceivad frama */
to. physical B wer(ds), fx transmit 4 frama »/
Starn. timans.seq); f= Start the timear running *f

Does 1t Work?

< Consider A with a too-short time-out
= A sends: seq=0, ack = 1 over and over

= B gets 0, sets frame_expected to 1
— will reject all O frames

+ B sends A frame with seq=0, ack=0
— eventually one makes it to A

= A gets ack, sets next_frame_to send to

+ Above scenario similar for lost/damaged '\
frames or acknowledgements B

< But ... what about startup?

Normal Startup

Abnormal Startup

Asands (O, 1, AQ) E sands [Q, 1, BQ]
= 1, Ag)t
Py

Agets [0 1, Ba)"
Asends [Q, 0, AJ)

Aqget (0, 0, Bo o
Asends [1,0 AT]
Boget (1,0, A1]"
Ezends 1,1, B1]

AT o

zends (1,1, A

[b Bgets (1,1, Al
BEzends [O, 1,

\

|

Transmission Factors

<= Assume a satellite channel, 500 msec rt delay
— super small ack’s

+ 50 kbps, sending 1000-bit frames
=1 =0, sending starts

=1 = 20 msec frame sent

=t =270 frame arrives

=1 =520 ack back at sender

= 20/ 520 about 4% utilization!

< All of: long delay, high bwidth, small fre
< Solution?

Allow Larger Window

< Satellite channel, 500 msec rt delay
< 50 kbps, sending 1000-bit frames

< Each frame takes 20 msec
— 25 frames outstanding before first ack arrives

= Make window size 25
= Called pipelining
< (See p.216, protocol 5)

— added enable/disable network layer
— MAX_SEQ - 1 outstanding
— - timer per frame

<= Frame In the middle 1s damaged?

Go Back N

= Arbitrary window size:
— send w frames (not 1) before blocking

= |f error, receiver discards all addtl frames
= Sender window fills, pipeline empties

= Sender times out, retransmits

pandwidth if many errors

= \Waste of

il

Timeod inemal g

/lf

Errar

Frame:s dizcarded bv 33 link Beer

Selective Repeat

= Recelver stores all frames, walits for incorrect one
= Window size greater than 1

it Timecu inemngal——=

D DADREAEN

o

GGG

Error Eutered by -Els link layer F'Ed-':EI‘E 2-5 pgssed
10 network layer

v

>

|_atest and Greatest:
Non-Sequential Recelve

< Tanenbaum, Protocol 6
= Ack latest packet In sequence received

= Acks not always piggybacked
— Protocol 5 will block until return data available
— start_ack_timer
— How long ack timeout relative to date time

+ Negative acknowledgement (NAK)
— damaged frame arrives
— non-expected frame arrives

Sender (0123456

—J

Aecener (01 234586

—J

2]

Problem?

Q1234567 (0123

4 56

0123456

—J

U113

4 56

)

]

= \Window size (MAX SEQ) /2

= How many buffers are needed? MA SEQ@”

Q1234567

Q1234567

)

Closing Thoughts...

= |f constant round-trip propagation delay
— set timer just slightly higher than delay

< |f variable round-trip propagation delay
— small timer has unnecessary retransmissions
— large has many periods of idle network
— same Is true of variable processing delay

< Constant, then “tight” timer

= Variable, then “loose” timer
— NAKSs can really help bandwidth efficiet

Topics

= |ntroduction

= Errors

= Protocols

El i

= Modeling
— complex specification and verificatior

= Examples —

= HDLC
— IBM SNA

= |nternet

~ SLIP
— PPP

= ATM

Examples

e

The Internet
= Point-to-Point on leased lines between routers

= Home user to Internet Service Provider (ISP)
— PPP

User's home Internet provider's office

Client process
using TCP/IP

Dial-up
telephone line

oy

|

‘ﬂ
e

TCP/IP connection .
: ,

Router Routing
process

-

Point-to-Point Protocol (PPP)

= Bit-based frame
— resorts to character based over a modem

< Line control: up, down, options
— Link Control Protocol (LCP)

= Network control options
— NCP (Network Control Protocol)

— Negotiate network layer options independe
particular network layer

— Service for: IP, IPX, AppleTalk ...

