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Introduction
Reliable, efficient communication between 
two adjacent machines
Machine A puts bits on wire, B takes them 
off.  Trivial, right? Wrong!
Challenges:
– Circuits make errors
– Finite data rate
– Propagation delay

Protocols must deal!



Data Link Layer Functions

Provides a well-defined service interface to the 
network layer.
Determines how the bits of the physical layer 
are grouped into frames (framing).
Deals with transmission errors (CRC and ARQ).
Flow control: regulates the flow of frames.
Performs general link layer management. (seq #, 
protocols, etc)
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Data Link Services

Network layer has bits
Says to data link layer:
– “send these to this other network layer”

Data link layer sends bits to other data link 
layer
Other data link layer passes them up to 
network layer



Data Link Services
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Types of Services Possible

Unacknowledged connectionless (best effort)
– No acknowledgements
– No logical connection beforehand
– Frame lost, no detection or recovery
– Why would you want this service?

When loss infrequent, easy for upper layer to recover
“Better never than late” (real-time traffic)

Acknowledged connectionless service
– Still no connection
– Packets acknowledged 
– Why would you want this service?

Unreliable channel (wireless)



Types of Services Possible

Acknowledged connection-oriented service
– Connection is set up
– All frames are numbered
– Data link guarantees:

All frames sent are received
No duplicates 
Frames received in order
Network layers sees equivalent of reliable bit stream



Framing

Data link breaks physical layer stream of  bits into 
frames

...010110100101001101010010...

Varying propagation delays: can’t count on timing
How does receiver detect boundaries?
– Length count
– Byte stuffing: special flag characters
– Bit stuffing
– Special physical layer encoding



Length count
First field is length of frame
Count until end
Then, look for next frame
Problems?



Length Count Problems



Byte Stuffing: Special Characters

Reserved ASCII characters for framing delimiters 
(beginning and end)
HDLC Example:
– Beginning: DLE STX (Data-Link Escape, Start of TeXt)
– End: DLE ETX (Data-Link Escape, End of TeXt) 

Problems?
Solution?



Byte Stuffing
[HDLC Example]

Prob 1: reserved character patterns occur within 
the “transparent” data.
Prob. 1 Soln:
– sender stuffs an extra DLE into the data stream just 

before each occurrence of an “accidental” DLE in the 
data stream.

– The data link layer on the receiving end unstuffs the 
DLE before giving the data to the network layer.



HDLC Byte Stuffing

DLE STX DLE ETXTransparent Data

DLE STX DLE ETXA B DLE H W

DLE STX DLE ETXA B DLE H WDLE

DLE STX DLE ETXA B DLE H W

Stuffed

Unstuffed

Before



Bit Stuffing
Prob. 2: Not all architectures are character oriented: arbitrary-
sized characters?
Soln: 
– stuff at bit level (bit stuffing)
– Each frame begins and ends with a special bit pattern called a

flag byte [01111110].
– What if flag bit pattern [01111110] occurs in data?
– Soln: Whenever sender data link layer encounters 5

consecutive 1’s in the data stream, it automatically stuffs a 0 
bit into the outgoing stream.

– When the receiver sees 5 consecutive incoming 1’s followed 
by a 0 bit, it automatically destuffs the 0 bit before sending the 
data to the network layer.

– Problem? Wasted bandwidth/processing



Bit Stuffing

Input Stream

Stuffed Stream

Unstuffed Stream

0110111111100111110111111111100000

01101111101100111110011111011111000000

0110111111100111110111111111100000

Stuffed bits



Special PHY-Layer Encoding
Send a signal that does not have legal 
representation
– low to high means a 1
– high to low means a 0
– high to high means frame end
– IEEE 802.4 (token bus)

Lastly, 2 or more delimiting methods used
Combination of above: 
– length plus frame boundary
– IEEE 802.3 (ethernet)
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Errors
Trends
Lines becoming digital
– errors rare

Copper the “last mile”
– errors infrequent

Wireless
– errors common

Errors are here for a while
Plus, consecutive errors
– bursts



Handling Errors

Add redundancy to data
Example: 
– “hello, world” is the data
– “hzllo, world” received (detect? correct?)
– “xello, world” received (detect? correct?)
– “jello, world” received (detect? correct?)
– what about similar analysis with “caterpillar”?

Some: error detection
More: error correction (Forward Error 
Correction)



What is an Error?
Frame has m data bits, r redundancy bits
– n = (m+r) bit codeword

Given two codewords, compute distance:
– 10001001
– 10110001
– 00111000
– XOR, 3 bits difference
– Hamming Distance

“So what?”



Code Hamming Distance

Two codewords are d bits apart, 
– then d errors are required to convert one to 

other
Code Hamming Distance min distance 
between any two legal codewords



Error Detection using Parity Bit

Single bit is appended to each data chunk
– makes the total number of 1 bits even/odd

Example: for even parity
– 1000000(1) 
– 1111101(0)
– 0000000(1) 

What is the Hamming distance?
How many bit errors can it detect?
How many bit errors can it correct?



Hamming Distance Example

Consider 8-bit code with 4 valid codewords:

00000000 00001111 11110000 11111111

What is the Hamming distance?
What is the min bits needed to encode?
– What are n, m, and r?

What if 00001110 arrives? 
What if 00001100 arrives?



Ham On
Consider a 10-bit code with 4 codewords:
00000 00000 00000 11111 11111 00000 11111 11111

Hamming distance?
Correct how many bit errors?
– 10111 00010 received, becomes 11111 00000 corrected
– 11111 00000 sent, 00011 00000 received

Might do better
– 00111 00111 received, 11111 11111 corrected
– and contains 4 single-bit errors



Fried Ham

All possible data words are legal
Choosing careful redundant bits can results in large 
Hamming distance
– to be better able to detect/correct errors

To detect d 1-bit errors requires having a Hamming 
Distance of at least d+1 bits
– Why? 

To correct d errors requires 2d+1 bits.
– Why?



Designing Codewords

Fewest number of bits needed for 1-bit errors?
– n=m+r bits to correct all 1-bit errors

Each message has n illegal codewords a 
distance of 1 from it
– form codeword (n-bits)
– invert each bit, one at a time

Need n+1 bits for each message
– n that are one bit away and 1 for the message



Designing Codewords (cont)

The total number of bit patterns = 2n

– So, (n+1) 2m < 2n

– So, (m+r+1) < (2m+r) / 2m

– Or, (m+r+1) < 2r

Given m, have lower limit on the number of 
check bits required to detect (and correct!) 
1-bit errors



Example

8 data bits, m = 8
How many check bits required to detect and 
correct 1-bit errors?
(8 + r + 1) < 2r

– Is 3 bits enough?
– Is 5 bits enough?

Use Hamming code to achieve lower limit



Hamming Code
Bits are numbered left-to-right starting at 1
Powers of two (1, 2, 4 ...) are check bits
Check bits are parity bits for previous set
Bit checked by only those check bits in the expansion 
– example: bit 19 expansion = 1 + 2 + 16

Examine parity of each check bit, k
– If not, add k to a counter

If 0, no errors else counter gives bit to correct



Ham It Up
Examples:
– Check bit 1 covers bits 1, 3, 5 ...
– Check bit 2 covers bits 2, 3, 6, 7, 10, 11 ...  



Hamming Code and Burst Errors



Error Correction
Expensive
– example: 1000 bit message
– Correct single errors? (10 check bits)
– Detect single errors? (1 parity bit)

Useful mostly:
– simplex links (one-way)
– long delay links (say, satellite)
– links with very high error rates

would get garbled every time resent



Error Detection

Most popular use Polynomial Codes or Cyclic 
Redundancy Codes (CRCs)
– checksums

Acknowledge correctly received frames
Discard incorrect ones
– may ask for retransmission

Error correction Vs. detection, tradeoff between:
– Number of redundant bits added
– Packet retransmission overhead
– Natural ecological niche for each technique depending 

on error rate



Polynomial Codes 
Bit string as polynomial w/0 and 1 coeffs
– ex: k bit frame, then xk-1 to x0

– ex: 10001 is 1x4+0x3+0x2+0x1+1x0 = x4+x0

Polynomial arithmetic mod 2
10011011  11110000  00110011

+11001010 -10100110 +11001101
01010001  01010110  11111110
Long division same, except subtract as above
“Ok, so how do I use this information?”



Doing CRC

Sender + receiver agree generator polynomial
– G(x), ahead of time, part of protocol
– with low and high bits a ‘1’, say 1001

Compute checksum to frame (m bits)
– M(x) + checksum to be evenly divisible by G(x)

Receiver will divide by G(x)
– If no remainder, frame is ok
– If remainder then frame has error, so discard

“But how do we compute the checksum?”



Computing Checksums

Let r be degree of G(x)
– If G(x) = x2+x0 = 101, then r is 2

Append r zero bits to frame M(x)
– get  xrM(x)
– ex: 1001 + 00 = 100100

Divide xrM(x) by G(x) using mod 2 division
– ex: 100100 / 101

Care about remainder
“Huh?  Do you have an example?”



Dividing xrM(x) by G(x)
____1011__

101 | 100100
101
011
000
110
101
110
101
11  ← Remainder

“Ok, now what?”



Computing Checksum Frame
Subtract (mod 2) remainder from xrM(x)

100100
11

100111

Result is checksum frame to be transmitted
– T(x) = 100111

What if we divide T(x) by G(x)?
– Comes out evenly, with no remainder
– Ex: 210,278 / 10,941 remainder 2399
– 210,279 - 2399 is divisible by 10,941

“Cool!”



Let’s See if it Worked
____1011__

101 | 100111
101
011
000
111
101
101
101

0  ← yeah!



Another 
Example

(Figure 3-8)



Power of CRC?
Assume an error, T(x) + E(x) arrives
Each 1 bit in E(x) is an inverted bit
Receiver does [T(x) + E(x)] / G(x)
Since T(x) / G(x) = 0, result is E(x) / G(x)
If E(x) factor of G(x), then error slips by
– all other errors are caught



Power of CRC!!
IEEE 802 Standard:
– x32+x26+x22+x16+x12+ x12+ x11+ x10+ x8+ x7+ x5+ 

x4+ x2+ x1+ 1 
– Detects burst errors of length 32 or less

Final words:
– Checksum calculation seems complex
– Only need a simple shift register circuit to compute 

and verify
– Virtually all LANs and point-to-point lines use it
– Previous assumption: bits in frame are random
– Correlation between bits make errors more common


