

Introduction to LAN/WAN

Application Layer

Application Layer Topics

Domain Name System (DNS) (7.1) (7.2)
Electronic Mail (E-mail) (7.2)
World Wide Web (7.3)

Domain Name System(DNS)

- The Humans love ASCII addresses
 - E.g. tana@art.ucsb.edu

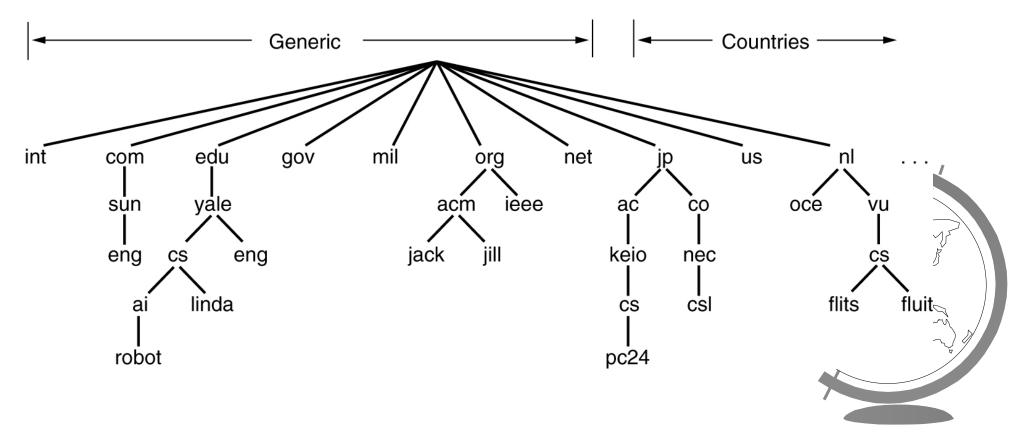
Machines prefer numbers:

- E.g: tana@128.111.24.41
- Provide the second s

– art.ucsb.edu == *128.111.24.41*

- Simple solution:
 - Text file hosts.txt on every machine with mappings
 - Machines update this file every night

Domain Name System(DNS)


- Simple file-based solution works well for small network
- The second secon
 - Updates become a headache
 - Name conflicts would give people ulcers
 - DNS: one distributed hierarchical mapping "database"
- The DNS Steps:
 - Application program calls *resolver* procedure, passes parameters (e.g. *gethostbyname()*)
 - Resolver sends UDP packet to local DNS server
 - Local DNS server looks up name and returns IP address
 - Calling application (e.g. email, web) then uses IP address

Domain Name Space

- Managing large and constantly changing humanreadable sets of names and IP addresses is a non-trivial problem
- 200 top level domains (.edu, .gov, .uk,.. Etc)
- Two categories of domains:
 - generic and countries
- Initially 6 generic domains
 - *com* (commercial), *edu* (educational), *gov* (government), *mil* (military), *net* (network providers), *org* (non-profit), and *int* (int. organizations)
- Countries: one for each country as defined in ISO 3166

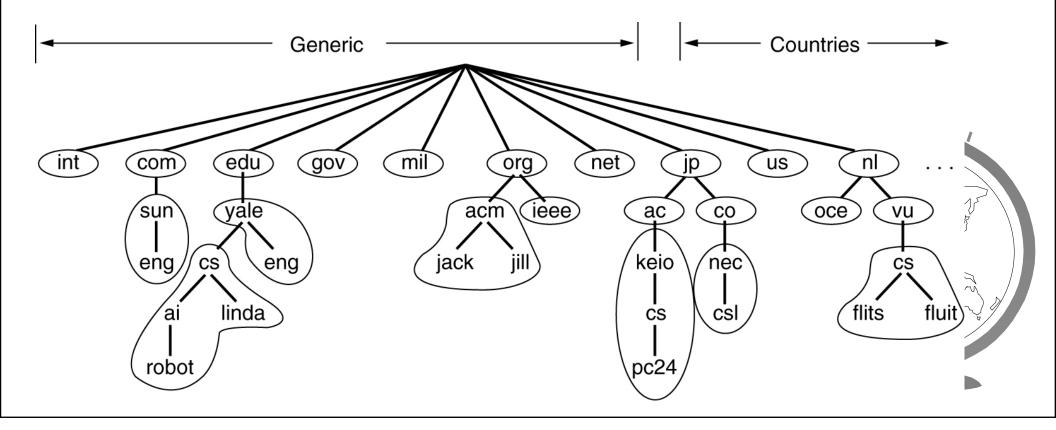
Domain Name Space

- In November 2000, ICANN approved four new general-purpose, top-level domains
 - *biz* (businesses), *info* (information), *name* (people's names) and *pro* (professionals like lawyers, doctors)

Domain Name Space

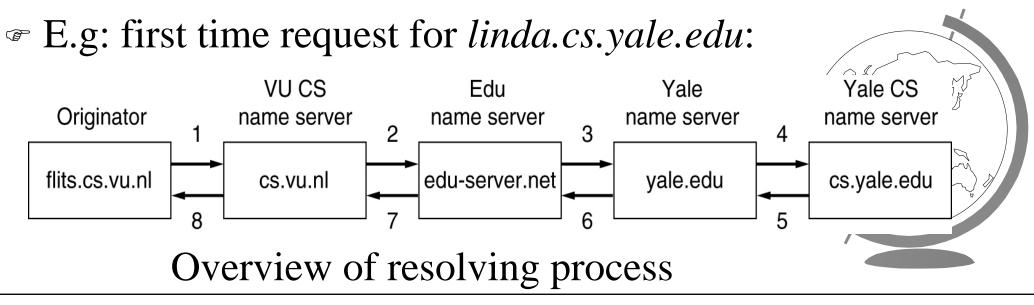
- Getting second-level domain like *EmmanuelAgu.com* is easy
 - Simply contact registrar to find out if name is taken
 - Registrar's: www.networksolutions.com
 - Registrar also checks for trademark infringements
 - If available, Emmanuel simply pays small fee and launches
- Domain is named by path upward from it to named root, separated by periods
 - E.g: Engr. Department at Sun Microsystems (eng.sun.com)
 - Due to hierarchy, no potential conflicts with eng. yale.edu
- Sub-domains applications to manager:
 - E.g. New VLSI dept. at Yale (*vlsi.cs.yale.edu*) simply talks to the manager (system admin) of (*cs.yale.edu*)

Resource Records


- Information about *domain-IP address* mappings are stored as resource records
- So DNS lookup returns complete resource record
- Could contain more than *domain-IP address* mappings
- Resource record is five tuple of (Domain name, Time_to_live, Class, Type, Value)

Name Servers

- Theoretically, single server could work
- The practice,
 - this one server would be overloaded
 - Also, where to put it? Australia?
- **Solution**
 - DNS name space divided into nonoverlapping zones
 - Each zone contains some part of a tree and some nameservers for that zone


Name Servers: Zones

- The Usually one primary nameserver per zone
- Possibly many secondary nameservers
- Primary nameservers read records from file on disk
- Secondaries get information from primary nameserver

Resolving Process

- When resolver gets query, passes it to one of local nameservers
- If domain under queried nameserver, returns authoritative record
- *The Authoritative* comes from file, not cached (outdated)
- If requested domain is remote, send message to top-level name server for requested domain

Resolving Process

- DNS queries are recursive first time around
- Results are cached for specified (*time_to_live*)
- time_to_live may be varied for different addresses
- Addresses that haven't changed in years could get higher *time_to_live* than volatile ones (owners in court....cache for seconds!!)
- Sext:
 - Email
 - WWW (maybe)

