So Far...
- Dealt with straight lines and flat surfaces
- Real world objects include curves
- Need to develop:
 - Representations of curves
 - Tools to render curves

Curve Representation: Explicit
- One variable expressed in terms of another
- Example:
 \[z = f(x, y) \]
- Works if one x-value for each y value
- Example: does not work for a sphere
 \[z = \sqrt{x^2 + y^2} \]
- Rarely used in CG because of this limitation

Curve Representation: Implicit
- **Algebraic**: represent 2D curve or 3D surface as zeros of a formula
- Example: sphere representation
 \[x^2 + y^2 + z^2 - 1 = 0 \]
- May restrict classes of functions used
- **Polynomial**: function which can be expressed as linear combination of integer powers of \(x, y, z \)
- Degree of algebraic function: highest sum of powers in function
- Example: \(yx^4 \) has degree of 5
Curve Representation: Parametric
- Represent 2D curve as 2 functions, 1 parameter
 \((x(u,v), y(u,v))\)
- 3D surface as 3 functions, 2 parameters
 \((x(u,v), y(u,v), z(u,v))\)
- Example: parametric sphere
 \[x(\theta, \phi) = \cos \phi \cos \theta, \quad y(\theta, \phi) = \cos \phi \sin \theta, \quad z(\theta, \phi) = \sin \phi\]

Choosing Representations
- Different representation suitable for different applications
- Implicit representations good for:
 - Computing ray intersection with surface
 - Determining if point is inside/outside a surface
- Parametric representation good for:
 - Breaking surface into small polygonal elements for rendering
 - Subdivide into smaller patches
- Sometimes possible to convert one representation into another

Continuity
- Consider parametric curve
 \[P(u) = (x(u), y(u), z(u))\]
- We would like smoothest curves possible
- Mathematically express smoothness as continuity (no jumps)
- **Defn:** If kth derivatives exist, and are continuous, curve has kth order parametric continuity denoted \(C^k\)

Continuity
- 0th order means curve is continuous
- 1st order means curve tangent vectors vary continuously, etc
- We generally want highest continuity possible
- However, higher continuity = higher computational cost
- \(C^2\) is usually acceptable
Interactive Curve Design

- Mathematical formula unsuitable for designers
- Prefer to interactively give sequence of control points
- Write procedure:
 - Input: sequence of points
 - Output: parametric representation of curve

Interactive Curve Design

- 1 approach: curves pass through control points (interpolate)
- Example: Lagrangian Interpolating Polynomial
- Difficulty with this approach:
 - Polynomials always have "wiggles"
 - For straight lines wiggling is a problem
- Our approach: merely approximate control points (Bezier, B-Splines)

De Casteljau Algorithm

- Consider smooth curve that approximates sequence of control points \([p_0, p_1, \ldots]\)

\[
p(u) = (1-u)p_0 + up_1 \quad \quad 0 \leq u \leq 1
\]

- Blending functions: \(u\) and \((1 - u)\) are non-negative and sum to one

De Casteljau Algorithm

- Now consider 3 points
- 2 line segments, \(P_0\) to \(P_1\) and \(P_1\) to \(P_2\)

\[
p_{00}(u) = (1-u)p_0 + up_1 \quad p_{11}(u) = (1-u)p_1 + up_2
\]
De Casteljau Algorithm

\[p(u) = (1-u)p_0 + up_1(u) \]
\[= (1-u)^2 p_0 + (2u(1-u))p_1 + u^2 p_2 \]

Example: Bezier curves with 3, 4 control points

Blending functions for degree 2 Bezier curve

\[b_{00}(u) = (1-u)^2 \quad b_{10}(u) = 2u(1-u) \quad b_{20}(u) = u^2 \]

Note: blending functions, non-negative, sum to 1

De Casteljau Algorithm

- Extend to 4 points \(P_0, P_1, P_2, P_3 \)
- \[p(u) = (1-u)^3 p_0 + (3u(1-u)^2) p_1 + (3u^2(1-u)) p_2 + u^3 \]
- Repeated interpolation is De Casteljau algorithm
- Final result above is Bezier curve of degree 3

Blending functions for 4 points

\[b_{000}(u) = (1-u)^3 \]
\[b_{101}(u) = 3u(1-u)^2 \]
\[b_{202}(u) = 3u^2(1-u) \]
\[b_{303}(u) = u^3 \]
De Casteljau Algorithm

- Writing coefficient of blending functions gives Pascal’s triangle

 \[
 \begin{array}{cccc}
 1 & & & \\
 1 & 1 & & \\
 1 & 2 & 1 & \\
 1 & 3 & 3 & 1 \\
 1 & 4 & 6 & 4 & 1
 \end{array}
 \]

 In general, blending function for k Bezier curve has form

 \[
 b_k(u) = \binom{k}{i} (1-u)^{k-i} u^i \quad \text{where} \quad \binom{k}{i} = \frac{k!}{i!(k-i)!}
 \]

 - Can express cubic parametric curve in matrix form

 \[
 p(u) = [1, u, u^2, u^3] M A
 \]

 \[
 M = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 -3 & 3 & 0 & 0 \\
 3 & -6 & 3 & 0 \\
 -1 & 3 & -3 & 1
 \end{bmatrix}
 \]

Subdividing Bezier Curves

- OpenGL renders flat objects
- To render curves, approximate by small linear segments
- Subdivide curved surface to polygonal patches
- Bezier curves useful for elegant, recursive subdivision
- May have different levels of recursion for different parts of curve or surface
- Example: may subdivide visible surfaces more than hidden surfaces

- Let (P0, ..., P3) denote original sequence of control points
- Relabel these points as (P00, ..., P30)
- Repeat interpolation \(u = \frac{1}{2} \) and label vertices as below
- Sequences \((P00, P01, P02, P03)\) and \((P03, P12, P21, P30)\)
 - define Bezier curves also
- Bezier Curves can either be straightened or curved recursively in this way
Bezier Surfaces
- Bezier surfaces: interpolate in two dimensions
- This called Bilinear interpolation
- Example: 4 control points, P₀₀, P₀₁, P₁₀, P₁₁, 2 parameters u and v
- Interpolate between
 - P₀₀ and P₀₁ using u
 - P₁₀ and P₁₁ using v
- Repeat two steps above using v

\[p(u, v) = (1-v)(1-u)p_{00} + v(1-u)p_{01} + u(1-v)p_{10} + up_{11} \]

Bezier Surfaces
- Recalling, \((1-u)\) and \(u\) are first-degree Bezier blending functions \(b_{0,1}(u)\) and \(b_{1,1}(u)\)

\[p(u, v) = b_{0,1}(v)b_{0,1}(u)p_{00} + b_{0,1}(v)b_{1,1}(u)p_{01} + b_{1,1}(v)b_{1,1}(u)p_{11} \]

Generalizing for cubic

\[p(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_{i,j}(v)b_{i,j}(u)p_{i,j} \]

Rendering Bezier patches in OpenGL: \(v=u = 1/2\)

B-Splines
- Bezier curves are elegant but too many control points
- Smoother = more control points = higher order polynomial
- Undesirable: every control point contributes to all parts of curve
- B-splines designed to address Bezier shortcomings
 - Smooth blending functions, each non-zero over small range
 - Use different polynomial in each range, (**piecewise polynomial**)

\[p(u) = \sum B_i(u)p_i \]

B-spline blending functions, order 2

NURBS
- Encompasses both Bezier curves/surfaces and B-splines
- Non-uniform Rational B-splines (NURBS)
- Rational function is ratio of two polynomials
- NURBS use rational blending functions
- Some curves can be expressed as rational functions but not as simple polynomials
- No known exact polynomial for circle
- Rational parametrization of unit circle on xy-plane:

\[x(u) = \frac{1-u^2}{1+u^2} \]
\[y(u) = \frac{2u}{1+u^2} \]
\[z(u) = 0 \]
NURBS

- We can apply homogeneous coordinates to bring in w

\[
x(u) = 1 - u^2 \\
y(u) = 2u \\
z(u) = 0 \\
w(u) = 1 + u^2
\]

- Using w, we get a cleanly integrate rational parametrization
- Useful property of NURBS: preserved under transformation
- Thus, we can project control points and then render NURBS

References

- Hill, chapter 11