Manipulating Pixmaps

- Operations of interest:
 - Copying pixmaps
 - glReadPixels: frame buffer to off-screen memory
 - glCopyPixels: frame buffer to frame buffer
 - glDrawPixels: pixmap to frame buffer
 - memCopy: off-screen to off-screen
 - Comparing pixmaps
 - Representing and coloring regions in pixmap

Manipulating Pixmaps

- Data types for pixmaps
 - Bitmap: 1 bit, on or off
 - Gray scale: one byte, values 0-255
 - RGB: 3 bytes (red, green, blue)
 - RGBA: 4 byte (red, green, blue, alpha)
- Declaration of RGB triple:
  ```cpp
  class RGB{
      public: unsigned char r, g, b;
  };
  ```
RGBPixmap Class

- OpenGL convention: pixmap (bottom to top, left to right)
- Add draw, read and copy methods (which use openGL)

Class RGB{
 public: unsigned char r, g, b;
 RGBPixmap(); // constructor
 void setPixel(int x, int y, RGB color);
 RGB getPixel(int x, y);
 void draw() { glDrawPixels(nCols, nRows, GL_RGB,
 GL_UNSIGNED_BYTE, pixel); }
 void read() { glReadPixels(x, y, nCols, nRows, GL_RGB,
 GL_UNSIGNED_BYTE, pixel); }
 void copy() { glCopyPixels(... Parameters...); }
 int readBMPFile(char *fname);
 void writeBMPFile(char *fname);
};

Note: refer to Hill fig. 10.3 for full RGBPixmap declaration

Scaling and Rotating Images

- Scaling: want a pixmap that has s times more pixels in x, y
 - s > 1: enlargement
 - s < 1: reduction, information is lost!

- OpenGL scaling:
 - glPixelZoom(float sx, float sy)
 - Sets scale factors for subsequent glDrawPixels command
 - Scaling is about current raster position, pt.
 - Pixel row r and column c of pixmap
 - Drawn as rectangle with bottom left current screen coordinates
 - Draws (pt.x + sx*r, pt.y + sy*c)
 - 90, 180 and 270 degree rotations:
 - Copy one pixmap to another doing matrix transposes
 - General rotations:
 - Affine transform of pixmap points to get new pixmap
Combining Pixmaps

- Two pixmaps A and B combined pixelwise to form third pixel C.
- i.e. \(C[i][j] = A[i][j] \odot B[i][j] \)
- Averaging:
 - \(C[i][j] = \frac{1}{2} \cdot (A[i][j] + B[i][j]) \)
- Subtraction:
- Generalized weighting:

Example:

\(A = (14, 246, 97), \ B = (82, 12, 190), f = 0.2 \)

\(C = (27, 199, 115) = 0.8 \ A + 0.2 \ B \)

Combining Pixmaps

- Generalized weighting:
- Example:
 - \(A = (14, 246, 97), \ B = (82, 12, 190), f = 0.2 \)
 - \(C = (27, 199, 115) = 0.8 \ A + 0.2 \ B \)
- Question: How to dissolve image A into B?

Alpha Channel and Image Blending

- Even more generalized weighting = blending/compositing
- Blending:
 - draw partially transparent image over another
 - Add 4th component, alpha value (A) to RGB
 - Interpretation: alpha specifies how opaque each pixel is
 - Transparent (A = 0), Total opacity (A = 255)
 - Alpha most frequently used in scaling colors

```cpp
class RGB{
    public: unsigned char r, g, b, a;
};
```

Alpha Channel and Image Blending

- Alpha channel: series of alpha values in a pixmap
- openGL alpha blending: `glBlendFunc()`
- Other alpha blending applications:
 - Simulating Chromakey: forcing certain colors to be transparent
 - Applying paint with a paintbrush: apply percentage of new color with each mouse stroke
References

- Hill, chapter 10