Introduction to Shadows

Basic idea:

- Shadows: Make image more realistic
- Important visual cues on relative positions of objects in scene
- Rendering shadows:
 - Points in shadow: use only ambient component
 - Points NOT in shadow: use all lighting components
- Simple illumination models == simple shadows
- Two methods:
 - Shadow buffer
 - Shadows as texture (projection)
- Third method used in ray-tracing (in advanced graphics class)
Shadow Buffer Approach

- Uses second depth buffer called shadow buffer
- Pros: not limited to plane surfaces
- Cons: needs lots of memory
- Theory:
 - Establish object-light path
 - Other objects in object-light path = object in shadow
 - Otherwise, not in shadow

Shadow Buffer Approach

- Shadow buffer records object distances from light source
- Shadow buffer element = distance of closest object in a direction
- Rendering in two stages:
 - Loading shadow buffer
 - Rendering the scene

Loading Shadow Buffer

- Initialize each element to 1.0
- Position a camera at light source
- Rasterize each face in scene updating pseudo-depth
- Shadow buffer tracks smallest pseudo-depth so far

Loading Shadow Buffer

- Shadow buffer calculation is independent of eye position
- In animations, shadow buffer loaded once
- If eye moves, no need for recalculation
- If objects move, recalculation required
Shadow Buffer (Rendering Scene)
- Render scene using camera as usual
- While rendering a pixel find:
 - pseudo-depth \(D \) from light source to \(P \)
 - Index location \((i,j) \) in shadow buffer, to be tested
 - Value \(d(i,j) \) stored in shadow buffer
- If \(d(i,j) < D \) (other object on this path closer to light)
 - point \(P \) is in shadow
 - set lighting using only ambient
- Otherwise, not in shadow

Shadows as Texture
- Paint shadows as a texture
- Works for flat surfaces illuminated by point light source
- Problem: compute shape of shadow

Shadows as Texture
- Project light-object edges onto plane
- Want shadow of entire object
- Theory: union of projections of individual faces = projection of entire object
- Algorithm:
 - First, draw plane using specular-diffuse-ambient components
 - Then, draw shadow projections (face by face) using only ambient component

Shadows as Texture
- Problem: find outline of shadow by calculating projections of object vertices onto plane
- Example: want to project vertex \(V \) to find \(V' \)
- Plane passes through point A and has normal, \(\mathbf{n} \)
Shadows as Texture

\[V = S + (V - S) \frac{n(A - S)}{n(V - S)} \]

Note: can express projection in homogeneous coordinates and use matrices

Other Issues

- Point light sources => simple but a little unrealistic
- Extended light sources => more realistic
- Shadow has two parts:
 - Umbra (inner part) => no light
 - Penumbra (outer part) => some light

References

- Hill, 8.6

Preview of Projects

- Project 4 due today (Friday)
- Still to be done:
 - Project 5: on class website later today
 - Final Exam
- Project 5
 - Write portions of graphics pipeline
 - Example:
 - used calls like glTranslate, glRotate
 - learnt matrices and math with numerical problems
 - Project 5: apply these in graphics pipeline to build your own glTranslate, glRotate
Preview of Projects

- **Project 5**
 - Previously ran application using pure `-openGL` switch
 - E.g `cs4731app -openGL -hw02`
 - `mgl.mglTranslate` simply called `glTranslate`
 - New run using `-cs4731GL` switch
 - E.g `cs4731app -cs4731GL -hw02`
 - Program now calls your `glTranslate`, `emmanuel_glTranslate`
 - **Project 5 goal:**
 - to give taste of what goes into building a language like `openGL`
 - Application of theory, matrix and vector math

Final Exam

- Similar to midterm
- Non-cumulative, covers lectures 13-24
- Posted powerpoint slides on website
- Most similar to midterm, last year’s final
- **Same rules:**
 - In-class: Thursday, October 16
 - Review session: Tuesday, October 14
 - 1 cheat sheet, 1 calculator
- Less mathy, more algorithmic, conceptual
- For some reasons students find it harder to describe things
- Also comes in finals week, so less time to prepare

Preview of Projects

- **Project 5: final words**
 - Some people view this as hardest project
 - Start early, you will have problems
 - Check calculations frequently
 - Will organize help session on Tuesday/Wednesday next week