





# **Introduction to Shadows**

- Shadows:

  - Make image more realistic
    Important visual cues on relative positions of objects in scene
- Rendering shadows:
  - Points in shadow: use only ambient component
  - Points NOT in shadow: use all lighting components
    Simple illumination models == simple shadows
- Two methods:
  - Shadow buffer
  - Shadows as texture (projection)
- Third method used in ray-tracing (in advanced graphics class)

#### **Shadow Buffer Approach**

- Uses second depth buffer called shadow buffer
- Pros: not limited to plane surfaces
- Cons: needs lots of memory
- Theory:
  - Establish object-light path
  - Other objects in object -light path = object in shadow
  - Otherwise, not in shadow

#### **Shadow Buffer Approach**

- Shadow buffer records object distances from light source
- Shadow buffer element = distance of closest object in a direction
- Rendering in two stages:
  - Loading shadow buffer
  - Rendering the scene

### **Loading Shadow Buffer**

- Initialize each element to 1.0
- Position a camera at light source
- Rasterize each face in scene updating pseudo-depth
- Shadow buffer tracks smallest pseudo-depth so far



### **Loading Shadow Buffer**

- Shadow buffer calculation is independent of eye position
- In animations, shadow buffer loaded once
- If eye moves, no need for recalculation
- If objects move, recalculation required



#### Shadow Buffer (Rendering Scene)

- Render scene using camera as usual
- While rendering a pixel find:
- pseudo-depth D from light source to P
- Index location [i][j] in shadow buffer, to be tested
- Value d[i][j] stored in shadow buffer
- If d[i][j] < D (other object on this path closer to light)
  - point P is in shadow
  - set lighting using only ambient
- Otherwise, not in shadow

#### **Shadows as Texture**

- Paint shadows as a texture
- Works for flat surfaces illuminated by point light source
- Problem: compute shape of shadow



# **Shadows as Texture**

- Project light-object edges onto plane
- Want shadow of entire object
- Theory: union of projections of individual faces = projection of entire object
- Algorithm:
  - First, draw plane using specular -diffuse-ambient components
  - Then, draw shadow projections (face by face) using only ambient component

# **Shadows as Texture**

- Problem: find outline of shadow by calculating projections of object vertices onto plane
- Example: want to project vertex V to find V'
- Plane passes through point A and has normal, n







# References

■ Hill, 8.6

# **Preview of Projects**

- Project 4 due today (Friday)
- Still to be done:
  - Project 5: on class website later today
  - Final Exam
- Project 5
  - Write portions of graphics pipelineExample:
  - - used calls like glTranslate, glrotate
      Learnt matrices and math with numerical problems
      Project 5: apply these in graphics pipeline to build your own glTranslate, glrotate

#### **Preview of Projects**

- Project 5
  - Previously ran application using pure -openGL switch
    E.g cs4731app -openGL -hw02

  - mgl.mglTranslate simply called glTranslate
  - Now run using -cs4731GL switch
  - E.g cs4731app -cs4731GL -hw02
  - Program now calls your glTranslate, emmanuel\_glTranslate
  - Project 5 goal:
    - to give taste of what goes into building a language like openGL
    - Application of theory, matrix and vector math

#### **Preview of Projects**

- Project 5: final words
  - Some people view this as hardest project
  - Start early, you will have problems
  - Check calculations frequently
  - Will organize help session on Tuesday/Wednesday next week

#### **Final Exam**

- Similar to midterm
- Non-cumulative, covers lectures 13-24
- Posted powerpoint slides on website
- Most similar to midterm, last year's final
- Same rules:
  - In-class: Thursday, October 16
  - Review session: Tuesday, October 14
  - 1 cheat sheet, 1 calculator
- Less mathy, more algorithmic, conceptual
- For some reasons students find it harder to describe things
- Also comes in finals week, so less time to prepare