CS 4731: Computer Graphics
Lecture 18: Hidden Surface Removal

Emmanuel Agu

Hidden surface Removal

We cannot see every surface in scene
To save time, draw only surfaces we see

= Occluded surfaces: hidden surface removal (visibility)

= Back faces: back face culling

= Faces outside view volume: viewing frustrum culling
= Definitions:

= Object space: before vertices are mapped to pixels

= Image space: after vertices have beenrasterized

Visibility (hidden surface removal)

m A correct rendering requires correct visibility
calculations

= Correct visibility — when multiple opaque polygons cover
the same screen space, only the front most one is
visible (remove the hidden surfaces)

wrong visibility Correct visibility

Visibility (hidden surface removal)

m Goal: determine which objects are visible to the eye
= Determine what colors to use to paint the pixels

m Active research subject - lots of algorithms have been
proposed in the past (and is still a hot topic)

Drawing polygon faces on screen consumes CPU cycles

Surfaces we cannot see and their elimination methods:

Visibility (hidden surface removal)

= Where is visiblity performed in the graphics pipeline?
vl ml

—_|modeling and per vertex

Y S\ o >
viewing lighting
v2, m2 v3, m3
interpolate b
~ |ma ~ ertex colg

e

Note: Map (X,y) values to screen (draw) and use z
value for depth testing

projection

Rasterization
texturing
Shading

visibilit

OpenGL - Image Space Approach

Determine which of the n objects is visible to each pixel
on the image plane

for (each pixel in the image) {
determine the object closest to the pixel
draw the pixel using the object’s color

}

Image Space Approach — Z-buffer

» Method used in most of graphics hardware (and thus
OpenGL): Z-buffer algorithm

Requires lots of memory

Basic idea:

= rasterize every input polygon

= Recall that we have z at polygon vertices

For every pixel in the polygon interior, calculate its
corresponding z value (by interpolation)

Choose the color of the polygon whose z value is the
closest to the eye to paint the pixel.

Image Space Approach — Z-buffer

Recall: after projection transformation

In viewport transformation

= X,y used to draw screen image

= z component is mapped to pseudo-depth with range [0,1]
However, objects/polygons are made up of vertices
Hence z is known at vertices

Point in object seen through pixel may be between
vertices

Need to interpolate to find z

Z (depth) buffer algorithm

How to choose the polygon that has the closet Z for a

given pixel?

Assumption for example: eye at z = 0, farther objects

have increasingly negative values

1. Initialize (clear) every pixel in the z buffer to a very

large negative value
2. Track polygon z's.

3. As werasterize polygons, check to see if polygon’s z
through this pixel is less than current minimum z

through this pixel
4. Run the following loop:

Z (depth) Buffer Algorithm

For each polygon {
for each pixel (x,y) inside the polygon projection area {
if (z_polygon_pixel(x,y) > depth_buffer(x,y)) {
depth_buffer(x,y) = z_polygon_pixel(x,y);
color_buffer(x,y) = polygon color at (x,y)

}
}

Note: we have depths at vertices. Interpolate for interior depths

Z buffer example

eye

Op VIew

Z buffer example

Step 1: Initialize the depth buffer

e

4999 {999 999 {999
9o—
SE

999 -999 -99Y -

Z buffer example

Step 2: Draw the blue polygon (assuming the OpenGL
program draws blue polyon first — the order does
not affect the final result any way).

-999

-999

-999

-999

-999

-000

-009

-000

-999

-999

Z buffer example

Step 3: Draw the yellow polygon

1999 1999 1999 1999

99 |-3 |-3]-999 A
B -3 1-999

999 1999

z-buffer drawback: wastes resources by rendering a face and then
drawing over it

Combined z-buffer and Gouraud Shading (fig 8.31)

For(int y = ybott; y <= ytop; y++) // for each scan line

{

find xleft and xright

find dleft and dright, and dinc
find colorleft and colorright, and colorinc

for(int x = xleft, c = colorleft, d = dleft; x <= xright;

if(d < d[xIlyD
{

put c into the pixel at (x, y)
d[x][y] = d; // update the closest depth

X++, c+= colorinc, d+= dinc)

OpenGL HSR Commands

Primarily three commands to do HSR

gl ut I ni t Di spl ayMode(GLUT_DEPTH | GLUT_RGB) instructs
openGL to create depth buffer

gl Enabl e(GL_DEPTH_TEST) enables depth testing

gl Cl ear (GL_COLOR_BUFFER_BI T | GL_DEPTH_BUFFER_BI T)
initializes the depth buffer every time we draw a new
picture

Back Face Culling

m Back faces: faces of opaque object which are “pointing
away” from viewer

m Back face culling — remove back faces (supported by

OpenGL)
AN =
<

= How to detect back faces?

Back Face Culling

If we find backface, do not draw, save rendering resources
There must be other forward face(s) closer to eye

F is face of object we want to test if backface

P is a point on F

Form view vector, V as (eye — P)

N is normal to face F

N
N v —v @

\

Backface test: F is backface if N.V < 0 why??

Back Face Culling: Draw mesh front faces

void Mesh::drawFrontFaces()

{
for(int f = 0;f < numFaces; f++)
{
if(isBackFace(f,) continue;
glBegin(GL_POLYGON);
{
int in = face[f].vert[v].normIndex;
int iv = face[v].vert[v].vertindex;
glNormal3f(norm[in].x, norm[in].y, norm[in].z;
glVertex3f(pt[iv].x, pt[iv].y, pt[iv].z);
glEnd();
3

Ref: case study 7.5, pg 406, Hill

View-Frustum Culling

Remove objects that are outside the viewing frustum
Done by 3D clipping algorithm (e.g. Liang-Barsky)

Ray Tracing

Ray tracing is another example of image space method
Ray tracing: Cast a ray from eye through each pixel to
the world.

Question: what does eye see in direction looking
through a given pixel?

/

Topic of graduate/advanced
raphics class

Ray Tracing

m Formulate parametric equations of
= ray through each pixel
= objects in scene

m Calculate ray-object intersection.

m

opic of graduate/advanced
raphics class

Painter’s Algorithm

m A depth sorting method
m Surfaces are sorted in the order of decreasing depth
m Surfaces are drawn in the sorted order, and overwrite
the pixels in the frame buffer
= Subtle difference from depth buffer approach: entire
face drawn
= Two problems:
= It can be nontrivial to sort the surfaces
= There can be no solution for the sorting order

References

= Hill, section 8.5, chapter 13

