CS 4731: Computer Graphics
Lecture 16: Illumination Models Part 2

Emmanuel Agu

Adding Color

» Sometimes light or surfaces are colored
m Treat R,G and B components separately
= Illumination equation goes from:

Ilum = ambient + diffuse + specular n

=Kax |l +KdxIx(N.L) +KsxIx(R.V)

= To:
Hum_ r=Ka_rx I_r+Kd_rxIl_rx(N.L) +Ks_rxI_rx(R.V)
IHlum_g=Ka_gxI_g+Kd_gxI1_gx(N.L) +Ks_gxI_gx(R.V)
IHlum_b =Ka_bxI_b+Kd_bxI1_bx(N.L) + Ks_bx I_b x (R.V)

Adding Color

Material |Ambient Diffuse Specular Exponent, n
Kar, Kag.kab Kdr, Kdgkdb IKsr, Ksg ksb
Black 0.0 0.01 0.5 32
plastic 0.0 0.01 0.5
B B2 (U5
Brass 0.329412 [0.780392 0.992157 27.8974
0.223529 0.568627 0.941176
UZTHST LTIS7TZ2S5 U GU7TSHS
Polished [|0.23125 0.2775 0.773911 89.6
Silver 0.23125 0.2775 0.773911
pde) ZTTS U 77391

Figure 8.17, Hill, courtesy of McReynolds and Blythe

Lighting in OpenGL @GL

= Adopt Phong lighting model
= specular + diffuse + ambient lights
= Lighting is computed at vertices
< Interpolate across surface (Gouraud/smooth shading)
< Use a constant illumination (get it from one of the vertices)

m Setting up OpenGL Lighting: ?\\f
= Light Properties
= Enable/Disable lighting
= Surface material properties
= Provide correct surface normals
= Light model properties

Light Properties @EL

m Properties:
= Colors / Position and type / attenuation

glLightfv(light, property,'lvalue)

8]

(1) constant: specify which light you want to set the property
E.g: GL_LIGHTO, GL_LIGHT1, GL_LIGHT2 ... you can
create multiple lights (OpenGL allows at least 8 lights)
(2) constant: specify which light property you want to set the value
E.g: GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION
(check the red book for more)
(3) The value you want to set to the property

Property Example

m Define colors and position a light

G

dLfloat light_ambient[] = {0.0, 0.0, 0.0, 1.0}; | __|
dLfloat light_diffuse[] = {1.0, 1.0, 1.0, 1.0};

dLfloat light_specular[] = {1.0, 1.0, 1.0, 1.0};

dLfloat light_position[] = {0.0, 0.0, 1.0, 1.0}; ™

g|Lightfv(GL_LIGHTO, GL_AMBIENT, light_ambient);
g|Lightfv(GL_LIGHTO, GL_DIFFUSE, light_diffuse);
g|Lightfv(GL_LIGHTO, GL_SPECULAR, light_specular);
g|Lightfv(GL_LIGHTO, GL_POSITION, light_position);

colors
| Position
What if I set

Position to
(0,0,1,0)?

Types of lights @EL

m OpenGL supports two types of lights
= Local light (point light)
= Infinite light (directional light)
m Determined by the light positions you provide
= w = 0: infinite light source (faster)
= w != 0: point light — position = (x/w, y/w, z/w)

GLfloat light_position[] = {x,y,z,w};
olligl L_LIGHTO, GL_POSITION, light_positiony;

Turning on the lights

= Turn on the power (for all the lights)

= glEnable(GL_LIGHTING); ¥}
= glDisable (GL_LIGHTING); V

= Flip each light’s switch
= glEnable(GL_LIGHTn) (n =0,1,2,..)

Controlling light position @GL

Modelview matrix affects a light’s position
Two options:
Option a:
Treat light like vertex
= Do pushMatrix, translate, rotate, ..glLightfv position,
popmatrix
Then call gluLookat
= Light moves independently of camera
= Option b:
= Load identity matrix in modelview matrix
= Call glLightfv then call gluLookat
= Light appears at the eye (like a miner’s lamp)

Material Properties @GL

m The color and surface properties of a material (dull,
shiny, etc)

= How much the surface reflects the incident lights
(ambient/diffuse/specular reflecetion coefficients)

glMaterialfv(face, property, value)

Face: material property for which face (e.g. GL_FRONT, GL_BACK,
GL_FRONT_AND_BACK)

Property: what material property you want to set (e.g. GL_AMBIENT,
GL_DIFFUSE,GL_SPECULAR, GL_SHININESS, GL_EMISSION, etc)
Value: the value you can to assign to the property

Material Example @GL

» Define ambient/diffuse/specular reflection and shininess

GLfloat mat_amb_diff[] = {1.0, 0.5, 0.8, 1.0}; :I

GLfloat mat_specular[] = {1.01.01.0, 1.0};
GLfloat shininess[] = {5.0}; « (range: dull 0—very shiny 128)

- refl. coeff.

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,
mat_amb_diff);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_speacular);

gIMaterialfv(GL_FRONT, GL_SHININESS, shininess);

Global light properties @GL

= glLightModelfv(property, value)
m Enable two sided lighting
= property = GL_LIGHT_MODEL_TWO_SIDE
= value = GL_TRUE (GL_FALSE if you don’t want two sided
lighting)
= Global ambient color
= Property = GL_LIGHT_MODEL_AMBIENT

= Value = (red, green, blue, 1.0);
= Check the red book for others

Surface Normals @GL

m Correct normals are essential for correct lighting

= Assqciate a normal to each vertex,

glBegin(...)
glNormal3f(x,y,z)
glVertex3f(x,y,z)

gIE nd()

m The normals you provide need to have a unit length

= You can use glEnable (GL_NORMALIZE) to have
OpenGL normalize all the normals

Lighting revisit

m Where is lighting performed in the graphics pipeline?

vi, ml

AN

v2, m2 v3, m3

Rasterization
texturing
hading

= isplay_|

Polygon shading model

m Flat shading - compute lighting once and assign the
color to the whole (mesh) polygon

Flat shading

Only use one vertex normaland material property to
compute the color for the polygon

Benefit: fast to compute

Used when: o
= Polygon is small enough
= Light source is far away (why?) B

m Eye is very far away (why?)
OpenGL command: glShadeModel(GL_FLAT)

Mach Band Effect

m Flat shading suffers from “mach band effect”

m Mach band effect — human eyes accentuate the
discontinuity at the boundary

[Recceiveq umensd)
w

Side view of a polygonal surfice

Smooth shading

= Fix the mach band effect — remove edge discontinuity
m Compute lighting for more points on each face

Flat shading Smooth shading

Smooth shading

= Two popular methods:
= Gouraud shading (used by OpenGL)
= Phong shading (better specular highlight, not in OpenGL)

Gouraud Shading

m The smooth shading algorithm used in OpenGL
glShadeMode(GL_SMOOTH)

= Lighting is calculated for each of the polygon vertices

= Colors are interpolated for interior pixels

Gouraud Shading

m Per-vertex lighting calculation
= Normal is needed for each vertex

m Per-vertex normal can be computed by averaging the
adjust face normals

nl

n n2
m n= (n1+n2+n3+n4)/4.0

Gouraud Shading

= Compute vertex illumination (color) before the
projection transformation

m Shade interior pixels: color interpolation (normals are
not needed)

C1

for all scanlines

Ca = lerp(C1, C2) Cb = lerp(C1, C3) >

c2 Cc3

* lerp: linear interpolation
Lerp(Ca, Cb) p P

Gouraud Shading

m Linear interpolation

O—O0—0 |
_— —4— — X= a7 (@a+b) *vI + b/(@+b) = v2
a b
vl x v2
= Interpolate triangle color: use y distance to interpolate
the two end points in the scanline, and use x distance to
?nterpolate jnterior pixel colors

Gouraud Shading Problem

= Lighting in the polygon interior can be inaccurate

Phong Shading

Instead of interpolation, we calculate lighting for each
pixel inside the polygon (per pixel lighting)

Need normals for all the pixels — not provided by user
Phong shading algorithm interpolates the normals and
compute lighting during rasterization (need to map the
normal back to world or eye space though)

Phong Shading

= Normal interpolation

A
na = lerp(ni, n2) nb = lerp(n1, n3)
>

lerp(na, nb)

n2
n3

= Slow — not supported by OpenGL and most graphics
hardware

References

= Hill, chapter 8

