CS 4731: Computer Graphics Lecture 15: Illumination Models Part 1 Emmanuel Agu

Announcements

- Midterm

 - Return on MondayScores will be on myWPI over the weekend
- Project 4:
 - On class website later today
 - Due next Friday

Illumination and Shading

Illumination Model

- The governing principles for computing the illumination
- A illumination model usually considers:

 - Light attributes (intensity, color, position, direction, shape)
 Object surface attributes (color, reflectivity, transparency, etc)
 - Interaction among lights and objects

Global Illumination

- Global illumination: take into account the interaction of light from all the surfaces in the scene
- Example: Ray tracing

Simple Local Illumination

- The model used by OpenGL
- Consider three types of light contribution to compute the final illumination of an object
 - Ambient
 - Diffuse
- Specular
- Final illumination of a point (vertex) = ambient + diffuse + specular

Ambient Light Contribution

- Ambient light = background light
- Light that is scattered by the environment
- Frequently assumed to be constant
- Very simple approximation of global illumination
- No direction: independent of light position, object orientation, observer's position or orientation

- 4

Ambient Light Example

Ambient Light Calculation

- Each light source has ambient light contribution (la)
- Different objects can reflect different amounts of ambient
- lacksquare Different ambient reflection coefficients Ka, 0 <= Ka <= 1
- So, ambient light from an object is:

Ambient = Ia x Ka

Diffuse Light Contribution

■ Diffuse light: The illumination that a surface receives from a light source and reflects equally in all direction

It does not matter where the eye is

Diffuse Lighting Example

Diffuse Light Calculation

■ Need to decide how much light the object point receive from the light source – based on Lambert's Law

Receive more light

Receive less light

Diffuse Light Calculation

■ Lambert's law: the radiant energy D that a small surface patch receives from a light source is:

$$D = I \times cos(\theta)$$

I: light intensity

θ: angle between the light vector and the surface normal

light vector (vector from object to light)

Diffuse Light Calculation

- Like ambient case, different objects reflect different amount of diffuse light
- different diffuse reflection coefficient Kd, (0 <= Kd <= 1)
- So, the amount of diffuse light that can be seen is:

Diffuse = $Kd \times I \times cos(\theta)$

Specular light contribution

- The bright spot on the object
- The result of total reflection of the incident light in a concentrate region

Specular light example

Put it all together

■ Illumination from a light:

IIIum = ambient + diffuse + specular

= Ka x I + Kd x I x (N.L) + Ks x I x (R.V)

■ If there are N lights

Total illumination for a point P = S (Illum)

■ Some more terms to be added (in OpenGL):

■ Self emission

■ Global ambient

■ Light distance attenuation and spot light effect

References

■ Hill, chapter 8