3D Clipping

CS 4731: Computer Graphics
Lecture 14: 3D Clipping andViewport Transformation '

Emmanuel Agu

= Clipping occurs after projection transformation

=Clipping is against canonical view volume

3D Clipping 3D Clipping
— . . . = Problem:
= 3D clipping against canonical view volume (CVV) .
= Two points, A = (Ax, Ay, Az, Aw) and C = (Cx, Cy, Cz, Cw),
= Automatically clipping after projection matrix in homogeneous coordinates

= If segment intersects with CVV, need to compute

= Liang-Barsky algorithm (embellished by Blinn) intersection point 1-=(Ix, Iy, 1z, 1w)

= CVV == 6 infinite planes (x=-1,1;y=-1,1;z=-1,1)
= Clip edge-by-edge of the an object against CVV

= Chopping may change number of sides of an object. E.qg.
chopping tip of triangle may create quadrilateral

3D Clipping

= Represent edge parametrically as A + (C— A)t
= Intepretation: a point is traveling such that:

3D Clipping

= Using notation (Aw +Ax) = w + X, write boundary coordinates
for 6 planes as:

= attime t=0, pointat A oundary Homogenous lip plane
= at time t=1, pointat C oordinate (BC) oordinate.
= Like Cohen-Sutherland, first determine trivial accept/reject CQ +x =-1
= E.g. to test edge against plane, point is: ok VR =1
= Inside (right of plane x=-1) if Ax/Aw > -1 or (Aw+Ax)>0 c2 Ay —-1
= Inside (left of plane x=1) if Ax/Aw < 1 or (Aw-Ax)>0 Cc3 _y
C4 =+
c5 -
-1 1
. .
I I > - L
AXIAN =Trivial accept: 12 BCs (6 for pt. A, 6 for pt. C) are positive
=Trivial reject: Both endpoints outside of same plane
3D Clipping 3D Clipping

= If not trivial accept/reject, then clip

= Define Candidate Interval (Cl) as time interval during which
edge might still be inside CVV. i.e. Cl = t_in to t_out

0, Cl

-

>t
tin t_out

= Conversely: values of t outside CI = edge is outside CVV

= Initialize Cl to [0,1]

= How to calculate t_hit?

= Represent an edge t as:

Edgeft) = ((Ax+ (O~ At (Ay+(QY - Ayt (Az+(Cz- Az, (Aw+(Ow - Aw))

Ax+(Cx- AX)t
m E.g.Ifx=1, _—
Aw+ (Cw- Aw)t
m Solving for t above,
Aw- Ax

t"(Aw- AX) - (Cw - Cx)

3D Clipping

= Test against each wall in turn

= If BCs have opposite signs = edge hits plane at time t_hit
= Define: “entering” = as t increases, outside to inside

= i.e.if pt. Ais outside, C is inside

= Likewise, “leaving” = as t increases, inside to outside (A inside,
C outside)

3D Clipping

= Algorithm:

= Test for trivial accept/reject (stop if either occurs)

= Set Cl to [0,1]

= For each of 6 planes:
= Find hit time t_hit
= If, as t increases, edge entering, t_in = max(t_in,t_hit)
= If, as tincreases, edge leaving, t_out = min(t_out, t_hit)
= If t_in > t_out => exit (no valid intersections)

Note: seeking smallest valid CI without t_in crossing t_out

3D Clipping

Example to illustrate search for t_in, t_out

Note: CVV is different shape. This is just example

3D Clipping
m If valid t_in, t_out, calculate adjusted edge endpoints A, C as

m A_chop=A+t_in(C-A)
m C_chop=C+t_out(C-A)

3D Clipping Implementation

Function clipEdge()

Input: two points A and C (in homogenous coordinates)
Output:

= 0, if no part of line AC lies in CVV
= 1, otherwise
= Also returns clipped A and C

m Store 6 BCs for A, 6 for C

3D Clipping Implementation

®m Use outcodes to track in/out
= Numberwalls1... 6
= Bitiof A’s outcode = 0 if A is inside ith wall
= 1 otherwise
m Trivial accept: both A and Coutcodes = 0
m Trivial reject: bitwise AND of A and Coutcodes is non-zero
= If not trivial accept/reject:
= Compute tHit
= Update t_in, t_out
= Ift_in>t_out, early exit

3D Clipping Pseudocode

int clipEdge(Point4& A, Point4& C)
{
double tIn = 0.0, tOut = 1.0, tHit;
double aBC[6], cBC[6];
int aOutcode = 0O, cOutcode =0;

..... find BCs for Aand C
..... form outcodesfor Aand C

if((aOutCode & cOutcode) != 0) // trivial reject
return O;

if((@aOutCode | cOutcode) == 0) // trivial accept
return 1;

3D Clipping Pseudocode

for(i=0;i<6;i++) // clip against each plane
{
if(cBC[1] < 0) // exits: C is outside
{
tHit = aBC[1]/@BC[1] — cBC[11);
tOut = MIN(tOut, tHit);

else if(aBC[i] <0) // enters: Ais outside
{

tHit = aBC[i]/@BCI[i] — cBi1);
tIn = MAX(tIn, tHit);

if(tIn > tOut) return O; // Cl is empty: early out

3D Clipping Pseudocode

Point4 tmp; // stores homogeneous coordinates
If(aOutcode != 0) // A is out: tIn has changed
{

tmp.x = A.x + tIn * (C.x— A.X);

// do same fory, z, and w components

1f(cOutcode != 0) // C is out: tOut has changed

C.x=A.x+tOut* (C.x—AX);
// do same for y, zand w components
¥
A=1tmp;
Return 1; // some of the edges lie inside CvV

3

Viewport Transformation

After clipping, do viewport transformation

We have used glViewport(x,y, wid, ht) before

Use again here!!

glViewport shifts x, y to screen coordinates

Also maps pseudo-depth z from range [-1,1] to [0,1]

Pseudo-depth stored in depth buffer, used for Depth testing (Will
discuss later)

References

m Hill, sections 7.4.4, 4.8.2

