

Parallel Projection

 OpenGL maps (projects) everything in the visible volume into a canonical view volume

Parallel Projection: glOrtho

- Parallel projection can be broken down into two parts
- Translation which centers view volume at origin
- Scaling which reduces cuboid of arbitrary dimensions to canonical cube (dimension 2, centered at origin)

Parallel Projection: glOrtho

- Translation sequence moves midpoint of view volume to coincide with origin:
- E.g. midpoint of x = (xmax + xmin)/2
- Thus translation factors:
- -(xmax+xmin)/2, -(ymax+ymin)/2, -(far+near)/2
- And translation matrix M1:

$$\begin{pmatrix} 1 & 0 & 0 & -(x \max + x \min) / 2 \\ 0 & 1 & 0 & -(y \max + y \min) / 2 \\ 0 & 0 & 1 & -(z \max + z \min) / 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Parallel Projection: glOrtho

- Scaling factor is ratio of cube dimension to Ortho view volume dimension
- Scaling factors:
 - 2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)
- Scaling Matrix M2:

$$\begin{pmatrix} \frac{2}{x \max - x \min} & 0 & 0 & 0 \\ 0 & \frac{2}{y \max - y \min} & 0 & 0 \\ 0 & 0 & \frac{2}{z \max - z \min} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Parallel Projection: glOrtho

Concatenating M1xM2, we get transform matrix used by glOrtho

$$\begin{pmatrix} \frac{2}{x \max - x \min} & 0 & 0 & 0 \\ 0 & \frac{2}{y \max - y \min} & \frac{2}{2} & 0 & 0 \\ 0 & 0 & \frac{2}{z \max - z \min} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad X \qquad \begin{pmatrix} 1 & 0 & 0 & -(x \max + x \min) / 2 \\ 0 & 1 & 0 & -(y \max + y \min) / 2 \\ 0 & 0 & 1 & -(z \max + z \min) / 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$M \ 2 \times M \ 1 = \begin{pmatrix} 2 \ / (x \max - x \min) & 0 & 0 & -(x \max + x \min) / (x \max - x \min) \\ 0 & 2 \ / (y \max - y \min) & 0 & -(y \max + \min) / (y \max - \min) \\ 0 & 0 & 2 \ / (z \max - z \min) & -(z \max + z \min) / (z \max - z \min) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Refer: Hill, 7.6.2

Perspective Projection: Classical

■ Side view:

Eye (projection center)

-z —

×

 $\frac{y}{y'} = \frac{-z}{d}$ $\Rightarrow y' = y x \xrightarrow{d}$

Based on similar triangle:

Perspective Projection: Classical

So (x*,y*) the projection of point, (x,y,z) unto the near plane N is given as:

$$(x^*, y^*) = \left(N \frac{P_x}{-P_z}, N \frac{P_y}{-P_z}\right)$$

- Numerical example:
- Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a near plane at N = 1?
- $(x^*, y^*) = (1 \times 1/1.5, 1 \times 0.5/1.5) = (0.666, 0.333)$

Pseudodepth

- Classical perspective projection projects (x,y) coordinates, drops z coordinates
- But we need z to find closest object (depth testing)
- Keeping actual distance of P from eye is cumbersome and slow

dis tan
$$ce = \sqrt{(P_x^2 + P_y^2 + P_z^2)}$$

■ Introduce **pseudodepth**: all we need is measure of which objects are further if two points project to same (x,y)

$$(x^*, y^*, z^*) = \left(N \frac{P_x}{-P_z}, N \frac{P_y}{-P_z}, \frac{aP_z + b}{-P_z}\right)$$

■ Choose a, b so that pseudodepth varies from −1 to 1 (canonical cube)

Pseudodepth

■ Solving:

$$z^* = \frac{aP_z + b}{-P}$$

■ For two conditions, z* = -1 when Pz = -N and z* = 1 when Pz = -F, we can set up two simultaneuous equations

■ Solving:

$$a = \frac{F + N}{F - N} \qquad b = \frac{-2FN}{F - N}$$

Homogenous Coordinates

■ Would like to express projection as 4x4 transform matrix

Previously, homogeneous coordinates of the point P = (Px,Py,Pz) was (Px,Py,Pz,1)

Introduce arbitrary scaling factor, w, so that P = (wPx, wPy, wPz, w) (Note: w is non-zero)

■ For example, the point P = (2,4,6) can be expressed as

(2,4,6,1)

■ or (4,8,12,2) where w=2

• or (6,12,18,3) where w = 3

 So, to convert from homogeneous back to ordinary coordinates, divide all four terms by last component and discard 4th term

Perspective Projection

■ Same for x. So we have:

$$x' = x \times d / -z$$

 $y' = y \times d / -z$
 $z' = -d$

■ Put in a matrix form:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \left(\begin{matrix} y \\ -d \end{matrix} \right) & 1 \\ \end{pmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{pmatrix} x' \\ y' \\ z' \\ w \end{pmatrix} \Rightarrow \begin{pmatrix} -d\left(\begin{matrix} x \\ y z \end{matrix} \right) \\ -d\left(\begin{matrix} y \\ y z \end{matrix} \right) \\ -d\left(\begin{matrix} y \\ y z \end{matrix} \right) \\ 1 \end{pmatrix}$$

OpenGL assumes d = 1, i.e. the image plane is at z = -1

Perspective Projection

■ We are not done yet.

Need to modify the projection matrix to include a and b

1² A x 1 A

We have already solved a and b

Perspective Projection

- Not done yet. OpenGL also normalizes the x and y ranges of the viewing frustum to [-1, 1] (translate and scale)
- So, as in ortho to arrive at final projection matrix
- we translate by
 - -(xmax + xmin)/2 in x
 - -(ymax + ymin)/2 in y
- Scale by:
 - 2/(xmax xmin) in x
 - 2/(ymax ymin) in y

Perspective Projection

■ Final Projection Matrix:

$$\begin{pmatrix} \frac{2N}{x \max - x \min} & 0 & \frac{x \max + x \min}{x \max - x \min} & 0 \\ 0 & \frac{2N}{y \max - y \min} & \frac{y \max + y \min}{y \max - y \min} & 0 \\ 0 & 0 & \frac{-(F + N)}{F - N} & \frac{-2FN}{F - N} \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane

Perspective Projection

 After perspective projection, viewing frustum is also projected into a canonical view volume (like in parallel projection)

Flexible Camera Control

- Instead of provide COI, it is possible to just give camera orientation
- Just like control a airplane's orientation

Flexible Camera Control

 \blacksquare How to compute the viewing vector (x,y,z) from $pitch(\phi)$ and $yaw(\theta)$?

Flexible Camera Control

- gluLookAt() does not let you to control pitch and yaw
- you need to
 - \blacksquare User supplies $\theta,\ \phi$ or roll angle
 - Compute/maintain the vector by yourself
 - Calculate COI = Eye + (x,y,z) Then, call gluLookAt().

References

■ Hill, chapter 7