CS 4731: Computer Graphics
Lecture 13: Projection
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m Projection — map the object from 3D space to 2D
screen

Perspective: gluPerspective()

Parallel: glOrtho()

Parallel Projection

After transforming the object to the eye space, parallel
projection is relatively easy — we could just drop the Z

= Xp=x
= Yp=y
s Zp=-d

We actually want to keep Z
— why?




Parallel Projection

= OpenGL maps (projects) everything in the visible
volume into a canonical view volume
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Parallel Projection: glOrtho

m Parallel projection can be broken down into two parts
= Translation which centers view volume at origin

m Scaling which reduces cuboid of arbitrary dimensions to
canonical cube (dimension 2, centered at origin)

Parallel Projection: glOrtho

[ Translation sequence moves midpoint of view volume to
coincide with origin:

n E.g. midpoint of x = (xmax + xmin)/2

L] Thus translation factors:
-(xmax+xmin)/2, -(ymax+ymin)/2, -(far+near)/2

n And translation matrix M1:
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Parallel Projection: glOrtho

Scaling factor is ratio of cube dimension to Ortho view
volume dimension

Scaling factors:
2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)
Scaling Matrix M2:
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Parallel Projection: glOrtho

Concatenating M1xM2, we get transform matrix used by glOrtho
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Refer: Hill, 7.6.2

Perspective Projection: Classical

= Side view:
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Perspective Projection: Classical

m  So (x*,y*) the projection of point, (x,y,z) unto the near
plane N is given as:

(x*,y*):?\l%,N_ Fy’ %

z z

= Numerical example:

Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a
near plane at N = 1?

= (x*, y*) =(1x1/1.5, 1x0.5/1.5) = (0.666, 0.333)

Pseudodepth

m Classical perspective projection projects (x,y) coordinates,
drops z coordinates

= But we need z to find closest object (depth testing)

= Keeping actual distance of P from eye is cumbersome and

slow
" 2 2 2
distan ce= ,,”Px +P+P,

m Introduce pseudodepth: all we need is measure of which
objects are further if two points project to same (x,y)

_ P P, aP, +bo
b ) =fh—p N T

m Choose a, b so that pseudodepth varies from -1 to 1
(canonical cube)




Pseudodepth

= Solving: pe aP +h
-P,
m For two conditions, z* = -1 when Pz = -N and z* = 1 when

Pz = -F, we can set up two simultaneuous equations
= Solving:

Homogenous Coordinates

Would like to express projection as 4x4 transform matrix
Previously, homogeneous coordinates of the point P =
(Px,Py,Pz) was (Px,Py,Pz,1)
= Introduce arbitrary scaling factor, w, so that P = (wPx,
wPy, wPz, w) (Note: w is non-zero)
m For example, the point P = (2,4,6) can be expressed as
= (2,4,6,1)
= or (4,8,12,2) where w=2
= or (6,12,18,3) where w =3
m So, to convert from homogeneous back to ordinary
coordinates, divide all four terms by last component and
discard 4th term

Perspective Projection

= Same for x. So we have:
X'=xxd/-z
y=yxd/-z
z’=-d

= Put in a matrix form:
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OpenGL assumes d = 1, i.e. the image plane isat z =-1

Perspective Projection

m We are not done yet.

m Need to modify the projection matrix to include a and b

X] il o o o)

v 1 0 o] y

z' of 0 a b z A
w 0 (1/d) 0 1 2

We have already solved a and b




Perspective Projection

m Not done yet. OpenGL also normalizes the x and y
ranges of the viewing frustum to [-1, 1] (translate and
scale)

m So, as in ortho to arrive at final projection matrix

= we translate by

= —(xmax + xmin/2in x

= -(ymax + ymin)/2iny
= Scale by:

m 2/(xmax — xmin) in x

= 2/(ymax —ymin) iny

Perspective Projection

= Final Projection Matrix:
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glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane

Perspective Projection

= After perspective projection, viewing frustum is also
projected into a canonical view volume (like in parallel
projection)
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Canonical View Volume

Flexible Camera Control

= Instead of provide COl, it is possible to just give camera
orientation
m Just like control a airplane’s orientation

pitch » yaw roll




Flexible Camera Control

= How to compute the viewing vector (x,y,z) from pitch(f)
and yaw(q) ?

z = Rcos(f)cos(90-q)
y y

x = Rcos (f)cos (q)

y= Rsin(f)

Flexible Camera Control

gluLookAt() does not let you to control pitch and yaw
you need to

= User supplies g, f or roll angle

» Compute/maintain the vector by yourself

= Calculate COIl = Eye + (X,y,z)

= Then, call gluLookAt().

References

= Hill, chapter 7




