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CS 4731: Computer Graphics
Lecture 13: Projection

Emmanuel Agu

3D Projection

Modeling                 Viewing                        Projection              
Transformation    Transformation           Transformation

Viewport 
Transformation   

Display       

Projection Transformation

n Projection – map the object  from 3D space to 2D 
screen 
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Perspective: gluPerspective() Parallel: glOrtho()

Parallel Projection

n After transforming the object to the eye space, parallel 
projection is relatively easy – we could just drop the Z
n Xp = x 

n Yp = y  

n Zp = -d

n We actually want to keep  Z 
– why?
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(x,y,z)

(Xp,  Yp)
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Parallel Projection 

n OpenGL maps (projects) everything in the visible 
volume into a canonical view volume

(-1, -1, 1)

(1, 1, -1)

Canonical View VolumeglOrtho(xmin, xmax, ymin, 
ymax,near, far)

(xmin, ymin, near)

(xmax, ymax, far)

Parallel Projection: glOrtho

n Parallel projection can be broken down into two parts
n Translation which centers view volume at origin
n Scaling which reduces cuboid of arbitrary dimensions to 

canonical cube (dimension 2, centered at origin)

Parallel Projection: glOrtho

n Translation sequence moves midpoint of view volume to 
coincide with origin: 

n E.g. midpoint of x = (xmax + xmin)/2
n Thus translation factors:

-(xmax+xmin)/2, -(ymax+ymin)/2,  -(far+near)/2 
n And translation matrix M1:
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Parallel Projection: glOrtho

n Scaling factor is ratio of cube dimension to Ortho view 
volume dimension

n Scaling factors: 
2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)

n Scaling Matrix M2:
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Parallel Projection: glOrtho
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Refer: Hill, 7.6.2

Concatenating M1xM2, we get transform matrix used by glOrtho
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Perspective Projection: Classical 

n Side view: 
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(0,0,0)
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Projection plane 

Eye (projection center)

(x,y,z)

(x’,y’,z’)
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Based on similar triangle: 
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y’       d

d
y’ =  y x  
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Perspective Projection: Classical

n So (x*,y*) the projection of point, (x,y,z) unto the near 
plane N is given as:

n Numerical example:
Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a 

near plane at N = 1?

n (x*, y*) = (1 x 1/1.5,  1 x 0.5/1.5) = (0.666, 0.333)
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Pseudodepth

n Classical perspective projection projects (x,y) coordinates, 
drops z coordinates

n But we need z to find closest object (depth testing)
n Keeping actual distance of P from eye is cumbersome and 

slow

n Introduce pseudodepth: all we need is measure of which 
objects are further if two points project to same (x,y)

n Choose a, b so that pseudodepth varies from –1 to 1 
(canonical cube)
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Pseudodepth

n Solving:

n For two conditions, z* = -1 when Pz = -N and z* = 1 when 
Pz = -F, we can set up two simultaneuous equations

n Solving:
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Homogenous Coordinates

n Would like to express projection as 4x4 transform matrix
n Previously, homogeneous coordinates of the point P = 

(Px,Py,Pz) was (Px,Py,Pz,1)
n Introduce arbitrary scaling factor, w, so that P = (wPx, 

wPy, wPz, w) (Note: w is non-zero)
n For example, the point P = (2,4,6) can be expressed as

n (2,4,6,1) 

n or (4,8,12,2) where w=2 
n or (6,12,18,3) where  w = 3

n So, to convert from homogeneous back to ordinary 
coordinates, divide all four terms by last component and 
discard 4t h term

Perspective Projection

n Same for x.   So we have: 
x’ =  x x  d / -z 
y’ =  y x d / - z 
z’ = -d

n Put in a matrix form:

OpenGL assumes d = 1, i.e. the image plane is at z = -1  
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Perspective Projection

n We are not done yet. 

n Need to modify the projection matrix to include a and b

x’           1    0    0       0            x 
y’    =     0    1    0     0           y
z’           0    0    a        b         z
w            0    0  (1/-d)   0        1
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z

Z = 1        z = -1 We have already solved a and b
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Perspective Projection

n Not done yet. OpenGL also normalizes the x and y 
ranges of the viewing frustum to [-1, 1] (translate and 
scale)

n So, as in ortho to arrive at final projection matrix
n we translate by

n –(xmax + xmin)/2 in x

n -(ymax +  ymin)/2 in y

n Scale by:
n 2/(xmax – xmin) in x
n 2/(ymax – ymin) in y

Perspective Projection

n Final Projection Matrix:

glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane
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Perspective Projection

n After perspective projection, viewing frustum is also 
projected into a canonical view volume (like in parallel 
projection)

(-1, -1, 1)

(1, 1, -1)

Canonical View Volume
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Flexible Camera Control

n Instead of provide COI, it is possible to just give camera 
orientation

n Just like control a airplane’s orientation 

pitch 

φ
x

y

yaw 

θ
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δ



6

Flexible Camera Control

n How to compute the viewing vector (x,y,z) from pitch(φ) 
and yaw(θ) ?

θ

y

x
φ

Φ = 0 
θ = 0

R

R cos (φ)

y = Rsin(φ)

x

y

z

x = Rcos (φ)cos (θ)
z = Rcos(φ)cos(90-θ )

z

Flexible Camera Control

n gluLookAt() does not let you to control pitch and yaw 
n you need to 

n User supplies θ, φ or roll angle
n Compute/maintain the vector by yourself
n Calculate COI = Eye + (x,y,z)
n Then, call gluLookAt(). 

References

n Hill, chapter 7


