
1

CS 4731: Computer Graphics
Lecture 13: Projection

Emmanuel Agu

3D Projection

Modeling Viewing Projection
Transformation Transformation Transformation

Viewport
Transformation

Display

Projection Transformation

n Projection – map the object from 3D space to 2D
screen

x

y

z

x

y

z

Perspective: gluPerspective() Parallel: glOrtho()

Parallel Projection

n After transforming the object to the eye space, parallel
projection is relatively easy – we could just drop the Z
n Xp = x

n Yp = y

n Zp = -d

n We actually want to keep Z
– why?

x

y

z
(x,y,z)

(Xp, Yp)

2

Parallel Projection

n OpenGL maps (projects) everything in the visible
volume into a canonical view volume

(-1, -1, 1)

(1, 1, -1)

Canonical View VolumeglOrtho(xmin, xmax, ymin,
ymax,near, far)

(xmin, ymin, near)

(xmax, ymax, far)

Parallel Projection: glOrtho

n Parallel projection can be broken down into two parts
n Translation which centers view volume at origin
n Scaling which reduces cuboid of arbitrary dimensions to

canonical cube (dimension 2, centered at origin)

Parallel Projection: glOrtho

n Translation sequence moves midpoint of view volume to
coincide with origin:

n E.g. midpoint of x = (xmax + xmin)/2
n Thus translation factors:

-(xmax+xmin)/2, -(ymax+ymin)/2, -(far+near)/2
n And translation matrix M1:



















+−
+−

+−

1000
2/min)max(100
2/min)max(010

2/min)max(001

zz
yy

xx

Parallel Projection: glOrtho

n Scaling factor is ratio of cube dimension to Ortho view
volume dimension

n Scaling factors:
2/(xmax-xmin), 2/(ymax-ymin), 2/(zmax-zmin)

n Scaling Matrix M2:

























−

−

−

1000

0
minmax

2
00

00
minmax

2
0

000
minmax

2

zz

yy

xx

3

Parallel Projection: glOrtho



















−+−−
−+−−
−+−−

=×

1000
min)max/(min)max(min)max/(200

min)max/(min)max(0min)max/(20
min)max/(min)max(00min)max/(2

12
zzzzzz

yyyy
xxxxxx

MM

Refer: Hill, 7.6.2

Concatenating M1xM2, we get transform matrix used by glOrtho

























−

−

−

1000

0
minmax

2
00

00
minmax

20

000
minmax

2

zz

yy

xx

X


















+−
+−
+−

1000
2/min)max(100
2/min)max(010
2/min)max(001

zz
yy
xx

Perspective Projection: Classical

n Side view:

x

y

z

(0,0,0)

d

Projection plane

Eye (projection center)

(x,y,z)

(x’,y’,z’)

-z

z

y
Based on similar triangle:

y -z
y’ d

d
y’ = y x

-z

=

Perspective Projection: Classical

n So (x*,y*) the projection of point, (x,y,z) unto the near
plane N is given as:

n Numerical example:
Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a

near plane at N = 1?

n (x*, y*) = (1 x 1/1.5, 1 x 0.5/1.5) = (0.666, 0.333)

() 







−−

=
z

y

z

x

P
P

N
P

P
Nyx ,**,

Pseudodepth

n Classical perspective projection projects (x,y) coordinates,
drops z coordinates

n But we need z to find closest object (depth testing)
n Keeping actual distance of P from eye is cumbersome and

slow

n Introduce pseudodepth: all we need is measure of which
objects are further if two points project to same (x,y)

n Choose a, b so that pseudodepth varies from –1 to 1
(canonical cube)

()222
tan zyx PPPcedis ++=

() 







−

+
−−

=
z

z

z

y

z

x

P
baP

P

P
N

P
P

Nzyx ,,**,*,

4

Pseudodepth

n Solving:

n For two conditions, z* = -1 when Pz = -N and z* = 1 when
Pz = -F, we can set up two simultaneuous equations

n Solving:

z

z

P
baPz

−
+=*

NF
NF

a
−
+

=
NF

FN
b

−
−

=
2

Homogenous Coordinates

n Would like to express projection as 4x4 transform matrix
n Previously, homogeneous coordinates of the point P =

(Px,Py,Pz) was (Px,Py,Pz,1)
n Introduce arbitrary scaling factor, w, so that P = (wPx,

wPy, wPz, w) (Note: w is non-zero)
n For example, the point P = (2,4,6) can be expressed as

n (2,4,6,1)

n or (4,8,12,2) where w=2
n or (6,12,18,3) where w = 3

n So, to convert from homogeneous back to ordinary
coordinates, divide all four terms by last component and
discard 4t h term

Perspective Projection

n Same for x. So we have:
x’ = x x d / -z
y’ = y x d / - z
z’ = -d

n Put in a matrix form:

OpenGL assumes d = 1, i.e. the image plane is at z = -1

()

()





















−




−

−

⇒



















=







































− 1

'
'
'

11100
0100
0010
0001

d
z

yd
z

xd

w
z
y
x

z
y
x

d

Perspective Projection

n We are not done yet.

n Need to modify the projection matrix to include a and b

x’ 1 0 0 0 x
y’ = 0 1 0 0 y
z’ 0 0 a b z
w 0 0 (1/-d) 0 1

x

y

z

Z = 1 z = -1 We have already solved a and b

5

Perspective Projection

n Not done yet. OpenGL also normalizes the x and y
ranges of the viewing frustum to [-1, 1] (translate and
scale)

n So, as in ortho to arrive at final projection matrix
n we translate by

n –(xmax + xmin)/2 in x

n -(ymax + ymin)/2 in y

n Scale by:
n 2/(xmax – xmin) in x
n 2/(ymax – ymin) in y

Perspective Projection

n Final Projection Matrix:

glFrustum(xmin, xmax, ymin, ymax, N, F) N = near plane, F = far plane

























−
−

−
−
+−

−
+

−

−
+

−

0100

2)(00

0
minmax
minmax

minmax
20

0
minmax
minmax0

minmax
2

NF
FN

NF
NF
yy
yy

yy
N

xx
xx

xx
N

Perspective Projection

n After perspective projection, viewing frustum is also
projected into a canonical view volume (like in parallel
projection)

(-1, -1, 1)

(1, 1, -1)

Canonical View Volume

x

y

z

Flexible Camera Control

n Instead of provide COI, it is possible to just give camera
orientation

n Just like control a airplane’s orientation

pitch

φ
x

y

yaw

θ

y

x

roll

δ

6

Flexible Camera Control

n How to compute the viewing vector (x,y,z) from pitch(φ)
and yaw(θ) ?

θ

y

x
φ

Φ = 0
θ = 0

R

R cos (φ)

y = Rsin(φ)

x

y

z

x = Rcos (φ)cos (θ)
z = Rcos(φ)cos(90-θ)

z

Flexible Camera Control

n gluLookAt() does not let you to control pitch and yaw
n you need to

n User supplies θ, φ or roll angle
n Compute/maintain the vector by yourself
n Calculate COI = Eye + (x,y,z)
n Then, call gluLookAt().

References

n Hill, chapter 7

