3D viewing under the hood

- Topics of Interest:
 - Viewing transformation
 - Projection transformation

Viewing Transformation

- Transform the object from world to eye space
 - Construct eye coordinate frame
 - Construct matrix to perform coordinate transformation
 - Flexible Camera Control
Viewing Transformation

- Recall OpenGL way to set camera:
 - `gluLookAt (Ex, Ey, Ez, cx, cy, cz, Up_x, Up_y, Up_z)`
 - The view up vector is usually (0,1,0)
 - Remember to set the OpenGL matrix mode to GL_MODELVIEW first
- Modelview matrix:
 - combination of modeling matrix M and Camera transforms V
 - `gluLookAt` fills V part of modelview matrix
- What does `gluLookAt` do with parameters (eye, COI, up vector) you provide?

Eye Coordinate Frame

- Known: eye position, center of interest, view-up vector
- To find out: new origin and three basis vectors

Assumption: direction of view is orthogonal to view plane (plane that objects will be projected onto)

Eye Coordinate Frame

- Origin: eye position (that was easy)
- Three basis vectors:
 - one is the normal vector (n) of the viewing plane,
 - other two (u and v) span the viewing plane

Center of interest (COI)

- we can get u first -
 - u is a vector that is perp to the plane spanned by N and view up vector (V_{up})

\[U = V_{up} \times N \]
\[u = U / |U| \]
Eye Coordinate Frame

• How about \(v \)?

Knowing \(n \) and \(u \), getting \(v \) is easy

\[
\mathbf{v} = \mathbf{n} \times \mathbf{u}
\]

\(v \) is already normalized

Put it all together

Eye space origin:

\(\text{Eye.x, Eye.y, Eye.z} \)

Basis vectors:

\[
\begin{align*}
\mathbf{n} &= (\text{eye} - \text{COI}) / |\text{eye} - \text{COI}| \\
\mathbf{u} &= (\mathbf{V}_{\text{up}} \times \mathbf{n}) / |\mathbf{V}_{\text{up}} \times \mathbf{n}| \\
\mathbf{v} &= \mathbf{n} \times \mathbf{u}
\end{align*}
\]

World to Eye Transformation

• Transformation matrix \((M_{w2e})\):

\[
P' = M_{w2e} \times P
\]

1. Come up with the transformation sequence to move eye coordinate frame to the world
2. And then apply this sequence to the point \(P \) in a reverse order

rotation:

\[
\begin{bmatrix}
\mathbf{v} & \mathbf{w} & \mathbf{z} & 0 \\
\mathbf{x} & \mathbf{y} & \mathbf{z} & 0 \\
x & y & z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

translation:

\[
\begin{bmatrix}
1 & 0 & 0 & -\mathbf{ex} \\
0 & 1 & 0 & -\mathbf{ey} \\
0 & 0 & 1 & -\mathbf{ez} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
World to Eye Transformation

- Transformation order: apply the transformation to the object in a reverse order - translation first, and then rotate

\[
M_{w2e} = \begin{pmatrix}
ux & uy & ux & 0 \\
vx & vy & vz & 0 \\
xn & ny & nz & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & -ex \\
0 & 1 & 0 & -ey \\
0 & 0 & 1 & -ez \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Head tilt: Rotate your head by \(\delta \)

- Just rotate the object about the eye space z axis - \(\delta \)

\[
M_{w2e} = \begin{pmatrix}
\cos(-\delta) & -\sin(-\delta) & 0 & 0 \\
\sin(-\delta) & \cos(-\delta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Why - \(\delta \)?
When you rotate your head by \(\delta \), it is like rotate the object by -\(\delta \).