
1

CS 4731: Computer Graphics
Lecture 12: More 3D Viewing

Emmanuel Agu

3D viewing under the hood

Modeling Viewing Projection
Transformation Transformation Transformation

Viewport
Transformation

Display

3D viewing under the hood

n Topics of Interest:

n Viewing transformation

n Projection transformation

Viewing Transformation

n Transform the object from world to eye space
n Construct eye coordinate frame

n Construct matrix to perform coordinate transformation
n Flexible Camera Control

2

Viewing Transformation

n Recall OpenGL way to set camera:
n gluLookAt (Ex, Ey, Ez, cx, cy, cz, Up_x, Up_y, Up_z)
n The view up vector is usually (0,1,0)

n Remember to set the OpenGL matrix mode to

GL_MODELVIEW first

n Modelview matrix:
n combination of modeling matrix M and Camera transforms V

n gluLookAt fills V part of modelview matrix
n What does gluLookAt do with parameters (eye, COI, up

vector) you provide?

Eye Coordinate Frame

n Known: eye position, center of interest, view-up vector
n To find out: new origin and three basis vectors

eye

center of interest (COI)

Assumption: direction of view is
orthogonal to view plane (plane
that objects will be projected onto)

90
o

Eye Coordinate Frame

n Origin: eye position (that was easy)
n Three basis vectors:

n one is the normal vector (n) of the viewing plane,

n other two (u and v) span the viewing plane

eye

Center of interest (COI)

n

u
v

world origin Remember u,v,n should
be all unit vectors

n is pointing away from the
world because we use left
hand coordinate system

N = eye – COI
n = N / | N |

(u,v,n should all be orthogonal)

Eye Coordinate Frame

n How about u and v?

eye
COI

n

u
v

V_up •We can get u first -
•u is a vector that is perp
to the plane spanned by
N and view up vector (V_up)

U = V_up x n

u = U / | U |

3

Eye Coordinate Frame

n How about v?

eye
COI

n

u
v

V_up Knowing n and u, getting v
is easy

v = n x u

v is already normalized

Eye Coordinate Frame

n Put it all together

eye
COI

n

u
v

V_up

Eye space origin:
(Eye.x , Eye.y, Eye.z)

Basis vectors:

n = (eye – COI) / | eye – COI|
u = (V_up x n) / | V_up x n |
v = n x u

World to Eye Transformation

n Transformation matrix (Mw2e) ?

P’ = Mw2e x P

uv

n

world

x

y

z

P

1. Come up with the transformation
sequence to move eye coordinate
frame to the world

2. And then apply this sequence to the
point P in a reverse order

World to Eye Transformation

n Rotate the eye frame to “align” it with the world frame

n Translate (-ex, -ey, -ez)

uv

n

world

x

y

z

(ex,ey,ez)

Rotation: ux uy uz 0
vx vy vz 0
nx ny nz 0
0 0 0 1

Translation: 1 0 0 -ex
0 1 0 -ey
0 0 1 -ez
0 0 0 1

4

World to Eye Transformation

n Transformation order: apply the transformation to the
object in a reverse order - translation first, and then
rotate

Mw2e =

uv

n

world
x

y

z

(ex,ey,ez)

ux uy ux 0 1 0 0 -ex
vx vy vz 0 0 1 0 -ey
nx ny nz 0 0 0 1 -ez
0 0 0 1 0 0 0 1

World to Eye Transformation

n Head tilt: Rotate your head by δ
n Just rotate the object about the eye space z

axis - δ
n Mw2e=

cos(-δ) -sin(-δ) 0 0 ux uy ux 0 1 0 0 -ex
sin(-δ) cos (-δ) 0 0 vx vy vz 0 0 1 0 -ey
0 0 1 0 nx ny nz 0 0 0 1 -ez
0 0 0 1 0 0 0 1 0 0 0 1

uv

n

world
x

y

z

Why - δ?

When you rotate your head by δ, it is like
rotate the object by –δ

