CS 4731: Computer Graphics Lecture 10: 3D Modeling: Polygonal Meshes Emmanuel Agu

3D Modeling

- Previously
- Introduced 3D modeling
- Previously introduced GLUT models (wireframe/solid) and Scene Description Language (SDL): 3D file format
- Previously used GLUT calls
 - Cylinder: glutWireCylinder(), glutSolidCylinder()

 - Cymider: glutWireCymider(), glutSolidCymider
 Cone: glutWireCone(), glutSolidCone()
 Sphere: glutWireSphere(), glutSolidSphere()
 Cube: glutWireCube(), glutSolidCube()

 - Newell Teapot, torus, etc

Polygonal Meshes

- Modeling with basic shapes (cube, cylinder, sphere, etc) too primitive
- Difficult to approach realism
- Polygonal meshes:
 - Collection of polygons, or faces, that form "skin" of object
 - Offer more flexibility
 - Models complex surfaces better
 - Examples:
 - Human face
 - · Animal structures
 - · Furniture, etc

Polygonal Meshes

- Have become standard in CG
- OpenGL
 - Good at drawing polygon
 - Mesh = sequence of polygons
- Simple meshes exact. (e.g barn)
- Complex meshes approximate (e.g. human face)
- Later: use shading technique to smoothen

Non-solid Objects

- Examples: box, face
- Visualize as infinitely thin skin
- Meshes to approximate complex objects
- Shading used later to smoothen
- Non-trivial: creating mesh for complex objects (CAD)

What is a Polygonal Mesh

- Polygonal mesh given by:

 - Polygon list
 Direction of each polygon
 Represent direction as normal vector

 - Normal vector used in shading
 Normal vector/light vector determines shading

Vertex Normal

- Use vertex normal instead of face normal
- See advantages later:
 - Facilitates clipping
 - Shading of smoothly curved shapes
 - $\,\blacksquare\,$ Flat surfaces: all vertices associated with same n
 - \blacksquare Smoothly curved surfaces: V1, V2 with common edge share ${\bf n}$

Defining Polygonal Mesh

■ Use barn example below:

Defining Polygonal Mesh

- Three lists:
 - Vertex list: distinct vertices (vertex number, Vx, Vy, Vz)
 - Normal list: Normals to faces (normalized nx, ny, nz)
 - Face list: indexes into vertex and normal lists. i.e. vertices and normals associated with each face
- Face list convention:
 - Traverse vertices counter-clockwise
 - Interior on left, exterior on right

Newell Method for Normal Vectors

- Martin Newell at Utah (teapot guy)
- Normal vector:
 - calculation difficult by hand
 - Given formulae, suitable for computer
 - Compute during mesh generation
- Simple approach used previously:
 - Start with any three vertices V1, V2, V3 ■ Form two vectors, say V1-V2, V3-V2

 - Normal: cross product (perp) of vectors

Newell Method for Normal Vectors

- Problems with simple approach:
 - If two vectors are almost parallel, cross product is small
 - Numerical inaccuracy may result
 - Newell method: robust
 - Formulae: Normal N = (mx, my, mz)

$$m_{x} = \sum_{i=0}^{N-1} (y_{i} - y_{nex(i)}) (z_{i} + z_{nex(i)})$$

$$m_{y} = \sum_{i=0}^{N-1} (z_{i} - z_{nex(i)}) (x_{i} + x_{nex(i)})$$

$$m_{z} = \sum_{i=0}^{N-1} (x_{i} - x_{nex(i)}) (y_{i} + y_{nex(i)})$$

$$m_z = \sum_{i=0}^{N-1} (x_i - x_{nex(i)}) (y_i + y_{nex(i)})$$

Newell Method Example

- Example: Find normal of polygon with vertices P0 = (6,1,4), P1 = (7,0,9) and P2 = (1,1,2)
- Solution:

Using simple cross product: $((7,0,9)-(6,1,4)) \times ((1,1,2)-(6,1,4)) = (2,-23,-5)$

Using Newell method, plug in values result is the same: Normal is (2, -23, -5)

Meshes in Programs

- Class Mesh
- Helper classes
 - VertexID
 - Face
- Mesh Object:
 - Normal list
 - Vertex list
 - Face list
- Use arrays of pt, norm, face
- Dynamic allocation at runtime
- Array lengths: numVerts, numNormals, numFaces

Meshes in Programs

- Face:
 - Vertex list
 - Normal vector associated with each face
 - Array of index pairs
- Example, vth vertex of fth face:
 - Position: pt[face[f]. vert[v]. vertIndex]
 - Normal vector: norm[face[f]. vert[v]. normIndex]
- Organized approach, permits random access

Meshes in Programs

■ Tetrahedron example

Meshes in Programs

■ Data structure:

Meshes in Programs

Drawing Meshes Using OpenGL

■ Pseudo-code:

```
for(each face f in Mesh)
{
    glBegin(GL_POLYGON);
    for(each vertex v in face f)
    {
        glNormal3f(normal at vertex v );
        glVertex3f(position of vertex v);
    }
    glEnd ( );
}
```

Drawing Meshes Using OpenGL

Actual code:

Drawing Meshes Using SDL

- Scene class reads SDL files
- Accepts keyword Mesh
- Example:
 - Pawn stored in mesh file pawn.3vn
 - Add line:
 - Push translate 3 5 4 scale 3 3 3 mesh pawn.3vn pop

More on Meshes

- Simple meshes easy by hand
- Complex meshes:Mathematical functionsAlgorithms

 - Digitize real objects
- Libraries of meshes available
- Mesh trends:

 - 3D scanningMesh Simplification

References

■ Hill, 6.1-6.2