CS 4731: Computer Graphics
Lecture 10: 3D Modeling: Polygonal Meshes

Emmanuel Agu

3D Modeling

= Previously

= Introduced 3D modeling

m Previously introduced GLUT models (wireframe/solid) and
Scene Description Language (SDL): 3D file format

m Previously used GLUT calls

Cylinder: glutWireCylinder(), glutSolidCylinder ()

Cone: glutWireCone(), glutSolidCone ()

= Sphere: glutWireSphere(), glutSolidSphere()

Cube: glutWireCube(), glutSolidCube()

Newell Teapot, torus, etc

Polygonal Meshes

= Modeling with basic shapes (cube, cylinder, sphere, etc)
too primitive

= Difficult to approach realism

= Polygonal meshes:

Collection of polygons, or faces, that form “skin” of object

Offer more flexibility

Models complex surfaces better
Examples:

= Human face
= Animal structures
= Furniture, etc

Polygonal Meshes

» Have become standard in CG
= OpenGL
= Good at drawing polygon
= Mesh = sequence of polygons
m Simple meshes exact. (e.g barn)
m Complex meshes approximate (e.g. human face)
m Later: use shading technique to smoothen

Non-solid Objects What is a Polygonal Mesh

Examples: box, face m Polygonal mesh given by:
Visualize as infinitely thin skin Polygon list

Meshes to approximate complex objects Direction of each polygon
Shading used later to smoothen

Non-trivial: creating mesh for complex objects (CAD)

Represent direction as normal vector
Normal vector used in shading
Normal vector/light vector determines shading

Vertex Normal Defining Polygonal Mesh

m Use vertex normal instead of face normal m Use barn example below:
m See advantages later:

Facilitates clipping

= Shading of smoothly curved shapes

Flat surfaces: all vertices associated with same n

Smoothly curved surfaces: V1, V2 with common edge share n

Defining Polygonal Mesh

= Three lists:
= Vertex list: distinct vertices (vertex number, Vx, Vy, Vz)
= Normal list: Normals to faces (normalized nx, ny, nz)

Face list: indexes into vertex and normal lists. i.e. vertices
and normals associated with each face

= Face list convention:
= Traverse vertices counter-clockwise
= Interior on left, exterior on right

Newell Method for Normal Vectors

= Martin Newell at Utah (teapot guy)
= Normal vector:
= calculation difficult by hand
= Given formulae, suitable for computer
= Compute during mesh generation
m Simple approach used previously:
= Start with any three vertices V1, V2, V3
= Form two vectors, say V1-V2, V3-V2
= Normal: cross product (perp) of vectors

Newell Method for Normal Vectors

m Problems with simple approach:
= If two vectors are almost parallel, cross product is small
= Numerical inaccuracy may result
= Newell method: robust
= Formulae: Normal N = (mx, my, mz)

-1
o

m, = Naa()’. - Ynex(\)xz * Zoexi))

N-

my = a (Zi - Znexm))()ﬁ +>§19xm)

-

)

N-

M, =& (% - Xootr %5+ Yoorts)

i

Newell Method Example

m Example: Find normal of polygon with vertices
PO = (6,1,4), P1=(7,0,9) and P2 = (1,1,2)

= Solution:
Using simple cross product:
((7,0,9)-(6,1,4)) X ((1,1,2)-(6,1,4)) = (2,-23,-5)

Using Newell method, plug in values result is the same:
Normal is (2, -23, -5)

Meshes in Programs

m Class Mesh
= Helper classes

= VertexID

= Face
» Mesh Object:

= Normal list

= Vertex list

= Face list
m Use arrays of pt, norm, face
= Dynamic allocation at runtime
= Array lengths: numVerts, numNormals, numFaces

Meshes in Programs

m Face:

= Vertex list

= Normal vector associated with each face

= Array of index pairs
= Example, vth vertex of fth face:

= Position: pt[face[f]. vert[v]. vertindex]

= Normal vector: norm[face[f]. vert[v]. normIndex]
m Organized approach, permits random access

Meshes in Programs

m Tetrahedron example

Meshes in Programs
m Data structure:

7" Vertex ID

class VertexID
public:
int vertindex; // index of this vertex in the vertex list
int normindex; //index of this vertex’s normal

ks
7" Face
class Face
public:
int nVerts; // number of vertices in this face

VertexID *vert; // the list of vertex and normal indices
Face(){nVerts = 0; vert = NULL;} // constructor
-Face(){delete[] vert; nVerts = 0; // destructor

Meshes in Programs

A Mesh
class Mesh{
private:
int numVerts; // number of vertices in the mesh
Point3 *pt; // array of 3D vertices
int numNormals; // number of normal vertices for the mesh
Vector3 *norm; // array of normals
int numFaces; // number of faces in the mesh
Face *face; // array of face data
/1/... others to be added later
public:
Mesh(); // constructor
~Mesh(); // destructor

int readFile(char *fileName); // to read in a filed mesh
.. other methods....

Drawing Meshes Using OpenGL
m Pseudo-code:

for(each face f in Mesh)

{
glBegin(GL_POLYGON);
for(each vertex v in face f)
gINormal3f(normal at vertex v) ;
glVertex3f(position of vertex v);
3
glEnd ();
b

Drawing Meshes Using OpenGL
= Actual code:

Void Mesh::draw() // use openGL to draw this mesh
for@nt f = 0;f < numFaces;f++)

glBegin(GL_POLYGON);
for(intv=0;v<face[f].nVerts;v++) // for each one

{

int in = face[f].vert{v].normindex; // index of this normal
int iv = face[f]vert[v].vertindex; //index of this vertex
gINormal3f(norm[in].x, norm[in].y, norm[in].z);
glVertex3f(pt[iv].x, pt[iv].y, pt[iv].z);

3
9lEnd ();
¥

Drawing Meshes Using SDL

m Scene class reads SDL files
m Accepts keyword Mesh
m Example:
= Pawn stored in mesh file pawn.3vn
= Add line:
= Push translate 3 5 4 scale 3 3 3 mesh pawn.3vn pop

More on Meshes

» Simple meshes easy by hand
m Complex meshes:

= Mathematical functions

= Algorithms

= Digitize real objects
m Libraries of meshes available
= Mesh trends:

= 3D scanning

= Mesh Simplification

3D Simplification Example

Original: 424,000 60,000 triangles 1000 triangles
triangles (14%). (0.2%)

(courtesy of Michael Garland and Data courtesy of Iris Development.)

References

= Hill, 6.1-6.2

