CS 4731: Computer Graphics
Lecture 9: Introduction to 3D Modeling

Emmanuel Agu

3D Modeling

m Overview of OpenGL modeling (Hill 5.6)
= Modeling: create 3D model of scene/objects
m OpenGL commands
Coordinate systems (left hand, right hand, openGL -way)
Basic shapes (cone, cylinder, etc)
= Transformations/Matrices
Lighting/Materials
Synthetic camera basics
View volume
= Projection
m GLUT models (wireframe/solid)
m Scene Description Language (SDL): 3D file format

Coordinate Systems

= Recall:

+z

>

Left hand coordinate system
*Not used in this class and
Right hand coordinate system «Not in OpenGL

3D Modeling: GLUT Models

= Two main categories:
= Wireframe Models
= Solid Models
= Basic Shapes
= Cylinder: glutWireCylinder(), glutSolidCylinder ()
= Cone: glutWireCone(), glutSolidCone ()
= Sphere: glutWireSphere(), glutSolidSphere ()
m Cube: glutWireCube(), glutSolidCube()
m More advanced shapes:
= Newell Teapot: (symbolic)
= Dodecahedron, Torus

GLUT Models: glutwireTeapot()

m The famous Utah Teapot has become an unofficial
computer graphics mascot

glutWireTeapo{(0.5) -

Create a teapot with size 0.5, and position
its center at (0,0,0)
Also glutSolidTeapot()

Again, you need to apply transformations to position it at the right spot

3D Modeling: GLUT Models

= Without GLUT models:

= Use generating functions

= More work!!

m Example: Look in examples bounce, gears, etc.
= What does it look like?

= Generates a list of points and polygons for simple shapes
= Spheres/Cubes/Sphere

Cylinder Algorithm

glBegin(GL_QUADS)
For each A = Angles{
glVertex3f(R*cos (A), R*sin(A), 0);
glVertex3f(R*cos (A+DA), R*sin(A+DA), 0)
glVertex3f(R*cos (A+DA), R*sin(A+DA), H)
glVertex3f(R*cos (A), R*sin(a), H)
3

// Make Polygon of Top/Bottom of cylinder

3D Transforms

m Scale:

= glScaled(sx, sy, sz) - scale object by (sx, sy, sz)
= Translate:

= glTranslated (dx, dy, dz) - translate object by (dx, dy, dz)
= Rotate:

= glRotated(angle, ux, uy, uz) — rotate by angle about an axis
passing through origin and (ux, uy, uz)

OpenGL Matrices

OpenGL Matrices/Pipeline

m OpenGL uses 3 matrices:
= Modelview matrix:
= Projection matrix:
= Viewport matrix:
= Modelview matrix:
= combination of modeling matrix M and Camera transformsV

OpenGL Matrices/Pipeline

m Projection matrix:

Scales and shifts each vertex in a particular way.
View volume lies inside cube of -1 to 1

Reverses sense of z: increasing z = increasing depth
Effectively squishes view volume down to cube centered at 1
Clipping then eliminates portions outside view volume
= Viewport matrix:

= Maps surviving portion of block (cube) into a 3D viewport

= Retains a measure of the depth of a point

Lighting and Object Materials

m Light components:
= Diffuse, ambient, specular
= OpenGL: glLightfv (), glLightf()
= Materials:
= OpenGL: glMaterialfv(), glMaterialf()

Synthetic Camera Synthetic Camera

m Define:
= Eye position
= LookAt point
= Up vector (if spinning: confusing)
m Programmer knows scene, chooses:
= eye
= |ookAt
= Up direction usually set to (0,1,0)
OpenGL:

= gluLookAt(eye.x, eye.y, eye.z, look.x, look.y, look.z, up.x,
up.y, up.z)

View Volume Projection
= Side walls determined by window borders
= Other walls determined by programmer-defined
= Near plane
= Far plane
= Convert 3D models to 2D:

= Project points/vertices inside view volume unto view window
using parallel lines along z - axis

= Different types of projections:
= Parallel
= Perspective
= Parallel is simple
m Will use for this intro, expand later

Hierarchical Transforms Using OpenGL

m Object dependency
= Graphical scene: many small objects
= Attributes (position, orientation, etc) depend on each other

P—

=g N

lower arm I

< base

Hierarchical Transforms Using OpenGL

m Object dependency description using tree structure

Root node

| Object position and orientation
y can be affected by its parent,

 — m grand-parent, grand-grand-parent
... nodes

Leat noe

Hierarchical representation
is known as Scene Graph

>

Transformations

= Two ways to specify transformations:

= (1) Absolute transformation: each part of the object is
transformed independently relative to the origin

:ﬂ Translate the base by (5,0,0);

Translate the lower arm by (5,00);

Translate the upper arm by (5,00);

Relative Transformation

A better (and easier) way:

(2) Relative transformation: Specify the transformation for each object
relative to its parent

==f]

tep 1: Translate base and

Relative Transformation

Step 2: Rotate the lower arm and all its descendants
relative to the base’s local y axis by -90 degree

= y

v
<

Relative Transformation

m Represent relative transformation using scene graph

~ansiote .00 |
ﬂ . ﬁmw

@ Apply all the way

down

Apply all he way

down

Hierarchical Transforms Using OpenGL
= Translate base and all its descendants by (5,0,0)
= Rotate the lower arm and its descendants by -90 degree about the local y

gIMatrixMode(GL_MODELVIEW);

Eﬂ I;l glLoadldentity();
aFe
Wi

... /1 setup your camera

glTranslatef(5,0,0);

% Draw_base();

glRotatef(-90, 0, 1, 0);

Draw_lower _arm();
Draw_upper_arm();
Draw_hammer();

SDL

SDL data structure format

Hierarchical Models

m SDL makes hierarchical modeling easy
= Without openGL: a little tougher
= Two important calls:
= glPushMatrix (): load transform matrix with following
matrices
= glPopMatrix(): restore transform matrix to what it was before
glPushMatrix ()

SDL

m Easy interface to use
m 3 steps:
= Step One
= #include “sdl.h”
= Add sdl.cpp to your make file/workspace
= Step Two:
= Instantiate a Scene Object
= Example: Scene scn;
m Step Three:
= scn.read(“your scene file.dat”); // reads your scene
= scn. makelightsOpenGL (); // builds lighting data structure
= scn. drawSceneOpenGL (); // draws scene using OpenGL

Example: Table without SDL

// define table leg
1/
void hw02: :tableLeg(minigl &mgl|, double thick, double len){
mgl.mglPushMatrix();
mgl.mglTranslated(©, len/2, 0);
mgl.mglScaled(thick, len, thick);
mgl.mglutSolidCube(1.0);
mgl.mglPopMatrix();

b

// note how table usestableLeg-
void hw02::table(minigl &mgl, double topWid, double topThick, double
legThick, double legLen){
// draw the table - a top and four legs
mgl.mglPushMatrix();
mgl.mglTranslated(©, legLen, 0);

Example: Table without SDL

mgl. mglScaled(topWid, topThick, topWid);
mgl.mglutSolidCube(1.0);
mgl.mglPopMatrix();

double dist = 0.95 * topWid/2.0 - legThick / 2.0;
mgl.mglPushMatrix();
mgl.mglTranslated(dist, O, dist);
tableLeg(mgl, legThick, legLen);
mgl.mglITranslated(0, O, -2*dist);
tableLeg(mg|, legThick, legLen);
mgl.mglTranslated(-2*dist, 0, 2*dist);
tableLeg(mg|, legThick, legLen);
mgl.mglTranslated(0, O, -2*dist);
tableLeg(mgl, legThick, legLen);
mgl.mglPopMatrix();

Example: Table without SDL
// translate and then call

mgl.mglTranslated(0.4, 0, 0.4);
table(mgl, 0.6, 0.02, 0.02, 0.3); // draw the table

Example: Table with SDL

def leg{push translate 0 .15 O scale .01 .15 .01 cube pop}

def table{

push translate 0 .3 O scale .3 .01 .3 cube pop
push

translate .275 0 .275 use leg

translate 0 O -.55 use leg

translate -.55 0 .55 use leg

translate 0 0 -.55 use leg pop

X

push translate 0.4 0 0.4 use table pop

Examples

= Hill contains useful examples on:
= Drawing fireframe models (example 5.6.2)
= Drawing solid models and shading (example 5.6.3)
= Using SDL in a program (example 5.6.4)
= Homework 3:
= Will involve studying these examples
= Work with SDL files in miniGL
= Start to build your own 3D model

References

= Hill, 5.6, appendices 3,5
m Angel, Interactive Computer Graphics using OpenGL

