CS 4731: Computer Graphics
Lecture 8: 3D Affine transforms

Emmanuel Agu

Introduction to Transformations

= Introduce 3D affine transformation:

Position (translation)
Size (scaling)
Orientation (rotation)
Shapes (shear)

Previously developed 2D (X,y)

Now, extend to 3D or (Xx,y,z) case

Extend transform matrices to 3D

Enable transformation of points by multiplication

Point Representation

= Previously, point in 2D as column matrix
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3D Coordinate Systems

» All perpendicular: X xY=2Z; Y xZ=X; ZxX=Y;
= Tip: sweep fingers x-y: thumb is z

Right hand coordinate system
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Left hand coordinate system
=Not used in this class and
*Not in OpenGL




Transforms in 3D 3x3 2D Translation Matrix
m 2D: 3x3 matrix multiplication =Previously, 2D :
m 3D: 4x4 matrix multiplication: homogenous coordinates " }
m Recall: transform object = transform each vertice w(g = 39(2 + a**-
= General form: gy'g gyﬂ gtya
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3x3 2D Translation Matrix 2D Scaling
=Now, 3D : 89(9 (?(9 4 g§x9 =Scale: Alter object size by scaling factor (s,, s,). i.e
¢Y+ = ¢¥* ¢b+
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*Where: xX’=x.1 + y.0 +2z.0 +tx.1 =X + tx, ...

etc




3x3 2D Scaling Matrix
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4x4 3D Scaling Matrix
P B 0 0
¢Y+=¢0 & O+ ¢y=
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<Example:
: : «lIf Sx=Sy = Sz=0.5
1!3 glﬂ -Can scale:

0
« big cube (sides = 1) to
small cube ( sides = 0.5)
0
0
S,
0

«2D: square, 3D cube

. o a5 0 00 a0
R Sy ¢o s 0% dy:
¢Y+=¢0 & 0+Fcy+ ny:(} y f*(}yf
81+ 80 0 15 81+ QZ: €0 0 0: QZ: OpenGL:
2 g g glg gO 0 13 13 glScaled(Sx,Sy,Sz)
Rotation Rotation

(x,y) -> Rotate about the origin by q
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How to compute (x’, y’) ?

x=rcos (f) y=rsin(f)

xX'=rcos (f +q) y=rsin (f +q)

Using trig identity

xy)
X’ = x cos(Q) —y sin(Q)
y’ = y cos(Q) + x sin(Q) )
Matrix form? | -
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3x3 2D Rotation Matrix
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Rotating in 3D

= Cannot do mindless conversion like before
= Why?
= Rotate about what axis?
= 3D rotation: about a defined axis
= Different Xform matrix for:
= Rotation about x-axis
= Rotation about y-axis
= Rotation about z-axis
= New terminology
= X-roll: rotation about x-axis
= Y-roll: rotation about y-axis
= Z-roll: rotation about z-axis

Rotating in 3D

= New terminology
= X-roll: rotation about x-axis
= Y-roll: rotation about y-axis
= Z-roll: rotation about z-axis
= Which way is +ve rotation

= Look in —ve direction (into +ve arrow)
= CCW is + ve rotation
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Rotating in 3D
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Rotating in 3D

m For a rotation angle, b about an axis

m Define:
c=cogb) s=sin(b)
A x-roll:
Sé 0 0 08
R(b):gg Z _CS g: OpenGL:
+ glrotated(q, 1,0,0)
go 0 0 1y

Rotating in 3D

A y-roll: ‘?C 0 s 09 Rules:
0 1 0 0: -Rotate row,
OpenGL: Ry(b ) :g_ s 0 ¢ 0+ colzr?]:i:::,\?s 1
glrotated(q, 0,1,0 + =Rest of row/col isO
g 0 00 lé «c,s in rect pattern
A z-roll:
& -s 0 00
gs c 0 0
OpenGL: Rz(b):go 1 0%
glrotated(q, 0,0,1) g :
0 0 0 13

Rotating in 3D

Q: Using y-roll equation, rotate P = (3,1,4) by 30 degrees:
A: ¢ = cos(30) = 0.866, s = sin(30) = 0.5, and
@ 0 s 086 =46 6
_80 10 oﬁlé_g 1+
€5 0 c 0% 99647
0 0 0 11y g 15

E.g. first line: 3.c + 1.0 +4.s+ 1.0 =4.6

Rotating in 3D

Q: Write C code to Multiply point P = (Px, Py, Pz, 1) by a 4x4
matrix shown below to give new point Q = (Qx,Qy,Qz, 1). i.e.

where

@y m, m; m,9
_(;mn My My M+

fm, m, m; m,7
go 0 0 1y




Rotating in 3D Rotating in 3D
= Outline of solution:
= Declare P,Q as array:
- Double P[4], Q[4];
= Declare transform matrix as 2-dimensional array
= Double M[4][4];
= Remember: C indexes from 0, not 1
= Long way:

m Using loops looks like:
n for(i=0;i<4;i++)
{
temp = 0;
for(j=0;j<4;j++)

temp += P[j]*M[i1L1;
< Write out equations line by line expression for Q[i]

3
= E.g. Q[0] = P[0]*M[0][0] + P[1]*M[O][1] + P[2]*M[O][2] + — .
P[3]*M[0][3] QI[i] = temp;
= Cute way: 3 . .
= Use indexing, say i for outer loop, j for inner loop = Test matrice code rigorously

m Use known results (or by hand) and plug into your code

3D Rotation About Arbitrary Axis 3D Rotation About Arbitrary Axis

= Arbitrary rotation axis (rx, ry, rz) m Can compose arbitrary rotation as combination of:
= openGL: rotate(q, rx, ry, rz) = X-roll

= Without openGL: a little hairy!! = Y-roll

= Important: read Hill pp. 239-241 = Z-roll

M= Rz(b3)Ry(b2)Rx (bl)




3D Rotation About Arbitrary Axis

m Classic: use Euler’s theorem

= Euler’s theorem: any sequence of rotations = one rotation
about some axis

m Our approach:

= Want to rotate b about the axisu through origin and arbitrary
point

Use two rotations to alignu and x-axis
Do x-roll through angleb

= Negate two previous rotations to de-align u and x-axis

3D Rotation About Arbitrary Axis

R,(b) =R,(-a)R,()R(D)R(-f)R (@)

Composing Transformation

m Composing transformation — applying several transforms
in succession to form one overall transformation
m Example:
M1 X M2 X M3 X P
where M1, M2, M3 are transform matrices applied to P
m Be careful with the order
m  Matrix multiplication is not commutative

References

= Hill, chapter 5.3




