CS 4731: Computer Graphics Lecture 8: 3D Affine transforms

Emmanuel Agu

Introduction to Transformations

- Introduce 3D affine transformation:
 - Position (translation)Size (scaling)

 - Orientation (rotation)
 - Shapes (shear)
- Previously developed 2D (x,y)
- Now, extend to 3D or (x,y,z) case
- Extend transform matrices to 3D
- Enable transformation of points by multiplication

Point Representation

■ Previously, point in 2D as column matrix

$$\begin{pmatrix} x \\ y \end{pmatrix} \qquad \qquad \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

■ Now, extending to 3D, add z-component:

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \qquad \text{or} \qquad P = \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix}$$

3D Coordinate Systems

- All perpendicular: $X \times Y = Z$; $Y \times Z = X$; $Z \times X = Y$;
- Tip: sweep fingers x-y: thumb is z

Right hand coordinate system

Left hand coordinate system •Not used in this class and •Not in OpenGL

Transforms in 3D

- 2D: 3x3 matrix multiplication
- 3D: 4x4 matrix multiplication: homogenous coordinates
- Recall: transform object = transform each vertice
- General form:

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \underbrace{\begin{array}{c} X \text{form of } P \\ Q_y \\ Q_z \\ 1 \end{array}} = M \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix}$$

3x3 2D Translation Matrix

■Previously, 2D:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} Sx & 0 \\ 0 & Sy \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

4x4 3D Scaling Matrix

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

 $\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$

- If Sx = Sy = Sz = 0.5
- ·Can scale:

•Example:

- big cube (sides = 1) to small cube (sides = 0.5)
- •2D: square, 3D cube

OpenGL:

glScaled(Sx,Sy,Sz)

Rotation

(x,y) -> Rotate about the origin by θ

$$x = r \cos(f)$$
 $y = r \sin(f)$

How to compute (x', y') ?

 $x' = r \cos(f + q)$ $y = r \sin(f + q)$

Rotation

Using trig identity

$$x' = x \cos(q) - y \sin(q)$$

 $y' = y \cos(q) + x \sin(q)$

Matrix form?

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos(\mathbf{q}) & -\sin(\mathbf{q}) \\ \sin(\mathbf{q}) & \cos(\mathbf{q}) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

3 x 3?

Rotating in 3D

- Cannot do mindless conversion like before
- Why?
 - Rotate about what axis?
 - 3D rotation: about a defined axis
 - Different Xform matrix for:
 - Rotation about x-axis
 - Rotation about y-axis
 Rotation about z-axis
- New terminology
 - X-roll: rotation about x-axis
 - Y-roll: rotation about y-axis
 Z-roll: rotation about z-axis

Rotating in 3D

- New terminology
 X-roll: rotation about x-axis
 Y-roll: rotation about y-axis

 - Z-roll: rotation about z-axis
- Which way is +ve rotation
 - Look in –ve direction (into + ve arrow)
 CCW is + ve rotation

Rotating in 3D

- For a rotation angle, **b** about an axis
- Define:

$$c = \cos(\mathbf{b})$$
 $s = \sin(\mathbf{b})$

A x-roll:

$$R_{x}(\boldsymbol{b}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c & -s & 0 \\ 0 & s & c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \begin{array}{l} \textbf{OpenGL:} \\ \textbf{glrotated}(q, \ 1, 0, 0) \end{array}$$

Rotating in 3D

A y-roll:

 $R_{y}(\boldsymbol{b}) = \begin{pmatrix} c & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ -s & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ Rules: } \cdot \text{Rotate row, column int. is 1} \cdot \text{Rest of row/col is 0} \cdot \text{c,s in rect pattern}$ OpenGL: glrotated(q, 0, 1, 0)

A z-roll:

OpenGL: glrotated(q, 0,0,1) $R_{c}(\boldsymbol{b}) = \begin{pmatrix} c & -s & 0 & 0 \\ s & c & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Rotating in 3D

Q: Using y-roll equation, rotate P = (3,1,4) by 30 degrees:

A: c = cos(30) = 0.866, s = sin(30) = 0.5, and

$$Q = \begin{pmatrix} c & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ -s & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 4.6 \\ 1 \\ 1.964 \\ 1 \end{pmatrix}$$

E.g. first line: 3.c + 1.0 + 4.s + 1.0 = 4.6

Rotating in 3D

Q: Write C code to Multiply point P = (Px, Py, Pz, 1) by a 4x4 matrix shown below to give new point Q = (Qx, Qy, Qz, 1). i.e.

$$\begin{pmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{pmatrix} = M \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix} \qquad M = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Rotating in 3D

- Outline of solution:
 - Declare P,Q as array:
 - Double P[4], Q[4];
 Declare transform matrix as 2-dimensional array
 - Double M[4][4];
 - Remember: C indexes from 0, not 1
 - Long way:

 - Write out equations line by line expression for Q[i]
 E.g. Q[0] = P[0]*M[0][0] + P[1]*M[0][1] + P[2]*M[0][2] + P[3]*M[0][3]
 - Cute way:
 - Use indexing, say i for outer loop, j for inner loop

Rotating in 3D

- Using loops looks like:
 - for(i=0; i<4; i++)temp = 0;for (j = 0; j < 4; j + +)temp += P[j]*M[i][j];
- Test matrice code rigorously
- Use known results (or by hand) and plug into your code

3D Rotation About Arbitrary Axis

- Arbitrary rotation axis (rx, ry, rz)
- openGL: rotate(θ, rx, ry, rz)
- Without openGL: a little hairy!!
- Important: read Hill pp. 239-241

3D Rotation About Arbitrary Axis

- Can compose arbitrary rotation as combination of:
 - X-rollY-roll

 - Z-roll

$$M = R_z(\boldsymbol{b}_3) R_v(\boldsymbol{b}_2) R_x(\boldsymbol{b}_1)$$

3D Rotation About Arbitrary Axis

- Classic: use Euler's theorem
- Euler's theorem: any sequence of rotations = one rotation about some axis
- Our approach:
 - \blacksquare Want to rotate β about the axis \boldsymbol{u} through origin and arbitrary point
 - \blacksquare Use two rotations to align \boldsymbol{u} and x-axis
 - \blacksquare Do x-roll through angle β
 - $\,\blacksquare\,$ Negate two previous rotations to de-align ${\bf u}$ and x-axis

3D Rotation About Arbitrary Axis

$$R_u(\boldsymbol{b}) = R_y(-\boldsymbol{q})R_z(\boldsymbol{f})R_x(\boldsymbol{b})R_z(-\boldsymbol{f})R_y(\boldsymbol{q})$$

Composing Transformation

- Composing transformation applying several transforms in succession to form one overall transformation
- Example:

M1 X M2 X M3 X P

where M1, M2, M3 are transform matrices applied to P

- Be careful with the order
- Matrix multiplication is not commutative

References

■ Hill, chapter 5.3