CS 4731: Computer Graphics
Lecture 7: Introduction to Transforms, 2D transforms

Emmanuel Agu

Introduction to Transformations

» Transformation changes an objects:

Position (translation)

Size (scaling)

Orientation (rotation)

Shapes (shear)

m We will introduce first in 2D or (X,y), build intuition
m Later, talk about 3D and 4D?

m Transform object by applying sequence of matrix
multiplications to object vertices

Why Matrices?

= All transformations can be performed using matrix/vector
multiplication

= Allows pre-multiplication of all matrices

m Note: point (x,y) needs to be represented as (x,y,1), also
called Homogeneous coordinates

Point Representation
m We use a column matrix (2x1 matrix) to represent a 2D
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m General form of transformation of a point (x,y) to (x’,y’)
can be written as:
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Translation

m To reposition a point along a straight line
= Given point (x,y) and translation distance (t,, t,)
m The new point: (X’,y’")
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=Note: it becomes a matrix-vector multiplication

Translation of Objects

=How to translate an object with multiple vertices?
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2D Rotation

=Default rotation center is origin (0,0)
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Rotation

Rotation

Using trig identities
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2D Scaling

=Scale: Alter object size by scaling factor (s,, s,). i.e
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Shearing

=)

= Y coordinates are unaffected, but x cordinates are translated
linearly with y

= Thatis:
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=h is fraction of y to be added to x

Arbitrary Rotation Center

m To rotate about arbitrary point P = (Px, Py) by q:

Translate object by T(-Px, -Py) so that P coincides with origin
Rotate the object by R(q)

Translate object back: T(Px, Py)
= In matrix form: T(Px,Py) R(q) T(-Px,-Py) * P
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=Similar for arbitrary scaling anchor,




Composing Transformation

m Composing transformation — applying several transforms
in succession to form one overall transformation

» Example:
M1 X M2 X M3 X P
where M1, M2, M3 are transform matrices applied to P
m Be careful with the order
m For example:

= Translate by (5,0) then rotate 60 degrees is NOT same as
= Rotate by 60 degrees then translate by (5,0)

OpenGL Transformations

m Designed for 3D
= For 2D, simply ignore z dimension
= Translation:

= glTranslated (tx, ty, tz)

= glTranslated (tx, ty, 0) ==> for 2D
= Rotation:

= glRotated(angle, Vx, Vy, Vz)

= glRotated(angle, 0, 0, 1) => for 2D
m Scaling:

= glScaled(sx, sy, sz)

= glScaled(sx, sy, 0) == for 2D
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