CS 4731: Computer Graphics
Lecture 7: Introduction to Transforms, 2D transforms

Emmanuel Agu

Introduction to Transformations

» Transformation changes an objects:

Position (translation)

Size (scaling)

Orientation (rotation)

Shapes (shear)

m We will introduce first in 2D or (X,y), build intuition
m Later, talk about 3D and 4D?

m Transform object by applying sequence of matrix
multiplications to object vertices

Why Matrices?

= All transformations can be performed using matrix/vector
multiplication

= Allows pre-multiplication of all matrices

m Note: point (x,y) needs to be represented as (x,y,1), also
called Homogeneous coordinates

Point Representation
m We use a column matrix (2x1 matrix) to represent a 2D

point 69(9
§vo

m General form of transformation of a point (x,y) to (x’,y’)
can be written as:

X'=ax+by+c

o g 0 < 0
or QY+:gd e fau oY+
pexeaet §15 80 0 15 615

Translation

m To reposition a point along a straight line
= Given point (x,y) and translation distance (t,, t,)
m The new point: (X’,y’")

X'=X + t, x.y)
y'=y + ty ~
(xy) o
or
P'=P+T where P:ae(g P:ag(g T:a@‘%
Yo Vg &g

3x3 2D Translation Matrix
7O o- g0 L pe
gyﬂ gyﬂ gtm
1 use 3x1 vector
89(’9 ad 0 to gexg
gY'+ = Qo 1 ty+ * gy_
§1; & 015 §p

=Note: it becomes a matrix-vector multiplication

Translation of Objects

=How to translate an object with multiple vertices?

a

4

[(P———L—?/

! 1
S0

Translate individual
vertices

2D Rotation

=Default rotation center is origin (0,0)

/
/
4 L]
S~)‘, g>0 :Rotate counter clockwise
-
—F—
»
(]
4
/
AN\ e
/-
g

>

g< 0 :Rotate clockwise

Rotation

Rotation

Using trig identities

"Y)
(x,y) -> Rotate about the origin by (cos(q +f) =cosq cosf - singsinf *
R ., i =g S g Si (x.y)
> (<, y) . sin(g +f) = sing cosf +cosq sinf r Xy,
X' = x cos(Q) —y sin(Q) =
How to compute (X', y’) ?
y' = y cos(Q) + x sin(Q)
x = rcos (f) y=rsin (f) Matrix form?
3x3?
X' = rcos(f+q) y=rsin(f +q) aX§_ae0s(@) - sin(@)gexo X
§v5 Esn) cosa) Svs
3x3 2D Rotation Matrix Rotation
'8 - g A o) = How to rotate an object with multiple vertices?
?g:?@(q) s'n(q)%exg)
Y'g &sin(@) cos(q) @&yg o
XY,
. R [
4 W---9
R ! 1
168 -sin 08X Rotate individual 1
X0 agos() @) CBEX O Vertices B

¢y+=¢sin@) cos@) O«y+
§15; § 0 0 1K1

>

2D Scaling

=Scale: Alter object size by scaling factor (s,, s,). i.e

X =X .Sx 6 0 Geexo
y'=y.Sy = %yg‘%o v

2.2) Sx=2,8y=2
[17 =
@2

> [y

“44)

3x3 2D Scaling Matrix

X0 _aXx 00
Eyg go Sygyg

!

a9 asx 0 00 axo
¢ _¢C ¢ =
¢Y==¢0 & 0:¢y=

&1y &0 0 15&l5

Shearing

=)

= Y coordinates are unaffected, but x cordinates are translated
linearly with y

= Thatis:
ny =y a0 & h 00 ax0
s X’=x+y*h 5 &I
¢y==¢0 1 0=*¢y=
&l & 0 15 Elj

=h is fraction of y to be added to x

Arbitrary Rotation Center

m To rotate about arbitrary point P = (Px, Py) by q:

Translate object by T(-Px, -Py) so that P coincides with origin
Rotate the object by R(q)

Translate object back: T(Px, Py)
= In matrix form: T(Px,Py) R(q) T(-Px,-Py) * P

ae(o 351 0 Px%@os(q) - sin@) Oqaé, 0 -ngge(g
gy: ¢0 1 Pyxsin@) cos@) 0-90 1 -Pysgy+

§1; &0 0 1% 0 0 1% 0 185

=Similar for arbitrary scaling anchor,

Composing Transformation

m Composing transformation — applying several transforms
in succession to form one overall transformation

» Example:
M1 X M2 X M3 X P
where M1, M2, M3 are transform matrices applied to P
m Be careful with the order
m For example:

= Translate by (5,0) then rotate 60 degrees is NOT same as
= Rotate by 60 degrees then translate by (5,0)

OpenGL Transformations

m Designed for 3D
= For 2D, simply ignore z dimension
= Translation:

= glTranslated (tx, ty, tz)

= glTranslated (tx, ty, 0) ==> for 2D
= Rotation:

= glRotated(angle, Vx, Vy, Vz)

= glRotated(angle, 0, 0, 1) => for 2D
m Scaling:

= glScaled(sx, sy, sz)

= glScaled(sx, sy, 0) == for 2D

References

= Hill, chapter 5.2

