CS 4731: Computer Graphics Lecture 5: Fractals Emmanuel Agu

What are Fractals?

- Mathematical expressions
- Approach infinity in organized way
- Utilizes recursion on computers
- Popularized by Benoit Mandelbrot (Yale university)
- Dimensional:
 - Line is one-dimensional
 - Plane is two-dimensional
- Defined in terms of self-similarity

Fractals: Self-similarity

- Level of detail remains the same as we zoom in
- Example: surface roughness or profile same as we zoom in
- Types:
 - Exactly self-similar
 - Statistically self-similar

Examples of Fractals

- Clouds
- Grass
- Fire
- Modeling mountains (terrain)
- Coastline
- Branches of a tree
- Surface of a sponge
- Cracks in the pavement
- Designing antennae (www.fractenna.com)

Courtesy: Internet Fractal Art Contest

Application: Fractal Art

Courtesy: Internet Fractal Art Contest

Koch Curves

- Discovered in 1904 by Helge von KochStart with straight line of length 1

- Recursively:
 Divide line into 3 equal parts
 Replace middle section with triangular bump with sides of length 1/3
 - New length = 4/3

Koch Snowflakes

- Can form Koch snowflake by joining three Koch curves
- Perimeter of snowflake grows as:

$$P_i = 3(4/3)^{i}$$

where P_i is the perimeter of the ith snowflake iteration

- \blacksquare However, area grows slowly and $S_{\!\scriptscriptstyle \infty} = 8/5!!$
- Self-similar:
 - zoom in on any portion
 - If *n* is large enough, shape still same
 - On computer, smallest line segment > pixel spacing

Koch Snowflakes

```
Pseudocode, to draw K_n:
                If (n equals 0) draw straight line
                Else{
                         Draw K<sub>n-1</sub>
                         Turn left 60°
                         Draw K<sub>n-1</sub>
                         Turn right 120°
                         Draw K<sub>n-1</sub>
                         Turn left 60°
```

Iterated Function Systems (IFS)

- Recursively call a function
- Does result converge to an image? What image?
- IFS's converge to an image
- Examples:

 - The Fern
 The Mandelbrot set

Mandelbrot Set

- Based on iteration theory
- Function of interest:

$$f(z) = (s)^2 + c$$

Sequence of values (or orbit):

$$\begin{aligned} d_1 &= (s)^2 + c \\ d_2 &= ((s)^2 + c)^2 + c \\ d_3 &= (((s)^2 + c)^2 + c)^2 + c \\ d_4 &= ((((s)^2 + c)^2 + c)^2 + c)^2 + c \end{aligned}$$

Mandelbrot Set

- lacksquare Orbit depends on s and c
- Basic question,:
 - For given s and c,
 - does function stay finite? (within Mandelbrot set)
- explode to infinity? (outside Mandelbrot set)
 Definition: if |s| < 1, orbit is finite else inifinite
- Examples orbits:

 - s = 0, c = -1, orbit = 0, -1,0, -1,0, -1,0, -1,..... finite s = 0, c = 1, orbit = 0,1,2,5,26,677..... explodes

Mandelbrot Set

- Mandelbrot set: use complex numbers for *c* and *s*
- Always set s = 0
- Choose c as a complex number
- For example:

•
$$s = 0$$
, $c = 0.2 + 0.5i$

■ Hence, orbit:

• 0, c,
$$c^2$$
, $c^2 + c$, $(c^2 + c)^2 + c$,

• 0, c, c², c²+c, (c²+c)²+c,......
 ■ Definition: Mandelbrot set includes all finite orbit c

Mandelbrot Set

■ Some complex number math:

$$i * i = -1$$

■ For example:

$$2i*3i = -6$$

■ Modulus of a complex number, z = ai + b:

$$z = \sqrt{a^2 + b^2}$$

■ Squaring a complex number:

$$x + yi = (x^2 + y^2) + (2xy)i$$
 Ref: Hill Appendix 2.3

Mandelbrot Set

- Calculate first 4 terms

 - with s=2, c=-1with s = 0, c = -2+i

Mandelbrot Set

- Calculate first 3 terms
 - with s=2, c=-1, terms are

$$2^{2}-1=5$$

 $5^{2}-1=24$
 $24^{2}-1=575$

■ with s = 0, c = -2+i

$$0 + (-2+i) = -2+i$$

$$(-2+i)^{2} + (-2+i) = 1-3i$$

$$(1-3i)^{2} + (-2+i) = -10-5i$$

Mandelbrot Set

- Fixed points: Some complex numbers converge to certain values after x iterations.
- Example:
 - s = 0, c = -0.2 + 0.5i converges to -0.249227 + 0.333677i after 80 iterations
 - Experiment: square -0.249227 + 0.333677i and add -0.2 + 0.5i
- Mandelbrot set depends on the fact the convergence of certain complex numbers

Mandelbrot Set

- Routine to draw Mandelbrot set:
- Cannot iterate forever: our program will hang!
- Instead iterate 100 times
- Math theorem:
 - if number hasn't exceeded 2 after 100 iterations, never will!
- Routine returns:
 - Number of times iterated before modulus exceeds 2, or
 - 100, if modulus doesn't exceed 2 after 100 iterations
 - See dwell() function in Hill (figure 9.49, pg. 510)

Mandelbrot Set

- Map real part to x-axis
- Map imaginary part to y-axis
- Set world window to range of complex numbers to investigate. E.g:

 X in range [-2.25: 0.75]

 - Y in range [-1.5: 1.5]
- Choose your viewport. E.g:
 Viewport = [V.L, V.R, V.B, V.T] = [60,380,80,240]

 Do window-to-viewport mapping

Mandelbrot Set

- So, for each pixel:
- Compute corresponding point in world
 Call your dwell() function
 Assign color <Red,Green,Blue> based on dwell() return value
 Choice of color determines how pretty
- Color assignment:
 - Basic: In set (i.e. dwell() = 100), color = black, else color = white
 - Discrete: Ranges of return values map to same color
 - E.g 0 20 iterations = color 1
 20 40 iterations = color 2, etc.
 - Continuous: Use a function

Mandelbrot Set Use continuous function

FREE SOFTWARE

- Free fractal generating software

 - FractintFracZoomAstro Fractals
 - Fractal Studio3DFract

References

■ Hill, chapter 9