
1

CS 4731: Computer Graphics
Lecture 4: 2D Graphic Systems

Emmanuel Agu

Announcements

n Room: if few people drop class, I will request room change
n Project 1 should work on any of the CCC unix/Linux

machines
n Simply let TA know which machine you worked on
n myWPI:

n TA’s: Jim Nichols and Paolo Piselli

n SA: Brian Corcoran
n Treat what they post as “official”.

2D Graphics: Coordinate Systems

n Screen coordinate system
n World coordinate system
n World window
n Viewport
n Window to Viewport mapping

Screen Coordinate System

•Screen: 2D coordinate
system (WxH)

•2D Regular Cartesian Grid

•Origin (0,0) at lower left
corner (OpenGL convention)

•Horizontal axis – x

•Vertical axis – y

•Pixels: grid intersections
(0,0)

y

x

(2,2)

2

Screen Coordinate System

Insert screen
dump from
OHIO

(0,0)

World Coordinate System

• Problems with drawing in screen coordinates:

• Inflexible

• Difficult to use

• One mapping: not application specific

• World Coordinate system: application-specific

• Example: drawing dimensions may be in meters, km, feet,
etc.

Definition: World Window

•World Window: rectangular region of drawing (in world
coordinates) to be drawn

•Defined by W.L, W.R, W.B, W.T

W.L W.R

W.B

W.T

Definition: Viewport

•Rectangular region in the screen used to display drawing

•Defined in screen coordinate system

V.L V.R

V.B

V.T

3

Window to Viewport Mapping

n Would like to:
n Specify drawing in world coordinates
n Display in screen coordinates

n Need some sort of mapping
n Called Window-to-viewport mapping
n Basic W-to-V mapping steps:

n Define a world window
n Define a viewport

n Compute a mapping from window to viewport

Window to Viewport Mapping (OpenGL Way)

n Define window (world coordinates):
n gluOrtho2D(left, right, bottom, top)
n Side note: gluOrtho2D is member of glu library

n Define Viewport (screen coordinates):
glViewport(left, bottom, right-left, top -bottom)

n All subsequent drawings are automatically mapped
n Do mapping before any drawing (glBegin(), glEnd())
n Two more calls you will encounter to set up matrices:

n glMatrixMode(GL_PROJECTION)
n glLoadIdentity()

n Type in as above for now, will explain later
n Ref: Hill Practice exercise 3.2.1, pg 86

Window to Viewport Mapping (Our Way)

n How is window-to-viewport mapping done?

n Trigonometry: derive Window-to-Viewport mapping

n Basic principles:

n Calculate ratio: proportional mapping ratio (NO distortion)

n Account for offsets in window and viewport origins

n You are given:
n World Window: W.R, W.L, W.T, W.B

n Viewport : V.L, V.R, V.B, V.T

n A point (x,y) in the world

n Required: Calculate corresponding point (s.x, s.y) in screen
coordinates

Window to Viewport Mapping (Our Way)

(x,y) (sx,sy)

LVRV
LVSx

LWRW
LWx

..
.

..
).(

−
−

=
−

−

BVTV
BVSy

BWTW
BWy

..
.

..
).(

−
−

=
−

−

W
.R

-W
.L

W.R-W.L

V
.R

-V
.L

V.R-V.L

4

Window to Viewport Mapping (Our Way)

LVRV
LVSx

LWRW
LWx

..
.

..
).(

−
−

=
−

−

BVTV
BVSy

BWTW
BWy

..
.

..
).(

−
−

=
−

−

Solve for Sx, Sy in terms of x, y:






 −

−
−

−






−
−

= LVLW
LWRW

LVRV
x

LWRW
LVRV

Sx ..
..

..
..

..






 −

−
−

−






−
−

= BVBW
BWTW

BVTV
y

BWTW
BVTV

Sy ..
..

..
..

..

Window to Viewport Mapping (Our Way)

Solve, given the formulas:






 −

−
−

−
−
−

= LVLW
LWRW

LVRV
x

LWRW
LVRV

Sx ..
..

..
..

..






 −

−
−

−
−
−

= BVBW
BWTW

BVTV
y

BWTW
BVTV

Sy ..
..

..
..

..

)2,0,4,0().,.,.,.(== TWBWRWLWW

What is (Sx,Sy) for point (3.4,1.2) in world coordinates if:

)240,80,380,60().,.,.,.(== TVBVRVLVV

Window to Viewport Mapping (Our Way)

Solution:






 −

−
−

−
−
−

= LVLW
LWRW

LVRV
x

LWRW
LVRV

Sx ..
..

..
..

..






 −

−
−

−
−
−

= BVBW
BWTW

BVTV
y

BWTW
BVTV

Sy ..
..

..
..

..

3326080 =+= xSx 1768080 =+= xSy

Hence, point (3.4,1.2) in world = point (332,176) on screen

More W-to-V Mapping

n W-to-V Applications:
n Zooming: in on a portion of object
n Tiling: W-to-V in loop, adjacent viewports

n Flipping drawings

n Mapping different window and viewport aspect ratios
(W/H)

n Example:

Window

Viewport

Important: Please read on your own,
section 3.2.2 on pg. 92 of Hill

5

Tiling: Example 3.2.4 of Hill (pg. 88)

n Problem: want to tile dino.dat in 5x5 across screen
n Code:

gluOrtho2D(0, 640.0, 0, 440.0);
for(int i=0;i < 5;i++)
{

for(int j = 0;j < 5; j++)
{

glViewport(i * 64, j * 44; 64, 44);
drawPolylineFile(dino.dat);

}
}

Zooming

n Problem:
n dino.dat is currently drawn on entire screen.
n User wants to zoom into just the head

n Specifies selection by clicking top -left and bottom -right
corners

n Solution:
n 1: Program accepts two mouse clicks as rectangle corners

n 2: Calculate mapping A of current screen to all of dino. dat

n 3: Use mapping A to refer screen rectangle to world

n 4: Sets world to smaller world rectangle
n 5: Remaps small rectangle in world to screen viewport

Using mouse to select screen rectangle for
zooming (Example 2.4.2, pg 64) for zooming

void myMouse(int button, int state, int x, int y)
{

static GLint corner[2];
static int numCorners = 0; // initialize
if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
{

corner[numCorners].x = x;
corner[numCorners].y = y;
numCorners++;
if(numCorners == 2)
{

glViewport(corner[0], corner[1]);
numCorners = 0;

}
}

}

Cohen-Sutherland Clipping

n Frequently want to view only a portion of the picture

n For instance, in dino.dat, you can select to view/zoom in
on only the dinosaur’s head

n Clipping: eliminate portions not selected

n OpenGL automatically clips for you

n We want algorithm for clipping

n Classical algorithm: Cohen-Sutherland Clipping

n Picture has 1000s of segments : efficiency is important

6

Clipping Points

(xmin, ymin)

(xmax, ymax)
n Determine whether a point

(x,y) is inside or outside of
the world window?

If (xmin <= x <= xmax)
and (ymin <= y <= ymax)

then the point (x,y) is inside
else the point is outside

Clipping Lines

n 3 cases:
n Case 1: All of line in
n Case 2: All of line out
n Case 3: Part in, part out

(xmin, ymin)

(xmax, ymax)

1

2

3

Clipping Lines: Trivial Accept

n Case 1: All of line in

n Test line endpoints:

n Note: simply comparing x,y
values of endpoints to x,y
values of rectangle

n Result: trivially accept.

n Draw line in completely

(Xmin, Ymin)

(Xmax, Ymax)

p1

p2

Xmin <= P1.x, P2.x <= Xmax
and

Ymin <= P1.y, P2.y <= Ymax

Clipping Lines: Trivial Reject

n Case 2: All of line out

n Test line endpoints:

n Note: simply comparing x,y
values of endpoints to x,y
values of rectangle

n Result: trivially reject.

n Don’t draw line in

p1

p2

§ p1.x, p2.x <= Xmin OR
§ p1.x, p2.x >= Xmax OR
§ p1.y, p2.y <= ymin OR
§ p1.y, p2.y >= ymax

7

Clipping Lines: Non-Trivial Cases

n Case 3: Part in, part out

n Two variations:

n One point in, other out
n Both points out, but part of

line cuts through viewport

n Need to find inside segments

n Use similar triangles to figure
out length of inside segments

e

p2

p1

d

delx

dely

delx
e

dely
d =

Cohen-Sutherland pseudocode (fig. 3.23)

int clipSegment(Point2& p1, Point2& p2, RealRect W)
{

do{
if(trivial accept) return 1; // whole line survives
if(trivial reject) return 0; // no portion survives
// now chop
if(p1 is outside)

// find surviving segment
else(p2 is outside)

// find surviving segment
}while(1)

}

Cohen-Sutherland Implementation

n Breaks space into 4-bit words
n Trivial accept: both FFFF
n Trivial reject: T in same position
n Chop everything else

n Systematically chops against
four edges

n Can use C/C++ bit operations

n Important: read Hill 3.3

FFFF

TFFT FFFT FFTT

TFFF

TTFF FTFF FTTF

FFTF

Parametric Equations

n Implicit form

n Parametric forms:
n points specified based on single parameter value
n Typical parameter: time t

n Some algorithms work in parametric form
n Clipping: exclude line segment ranges
n Animation: Interpolate between endpoints by varying t

0),(=yxF

tPPPtP *)()(010 −+= 10 ≤≤ t

8

References

n Hill, 3.1 – 3.3, 3.8

