CS 4731: Computer Graphics
Lecture 4: 2D Graphic Systems

Emmanuel Agu

Announcements

m Room: if few people drop class, | will request room change
m Project 1 should work on any of the CCC unix/Linux
machines
m Simply let TA know which machine you worked on
= myWPI:
= TA’s: Jim Nichols and Paolo Piselli
= SA: Brian Corcoran
= Treat what they post as “official”.

2D Graphics: Coordinate Systems

Screen coordinate system
World coordinate system
World window

Viewport

Window to Viewport mapping

Screen Coordinate System

=Screen: 2D coordinate
system (WxH)

«2D Regular Cartesian Grid

«Origin (0,0) at lower left

corner (OpenGL convention) A{
=Horizontal axis — x T

IS
«Vertical axis —y ©.0) x

«Pixels: grid intersections

(2,2)

Screen Coordinate System

World Coordinate System

« Problems with drawing in screen coordinates:
= Inflexible
- Difficult to use
= One mapping: not application specific

= World Coordinate system: application-specific

= Example: drawing dimensions may be in meters, km, feet,
etc.

Definition: World Window

«World Window: rectangular region of drawing (in world
coordinates) to be drawn

«Defined by W.L, W.R, W.B, W.T PPN

W.T

WB 1

=

H

Definition: Viewport

=Rectangular region in the screen used to display drawing

«Defined in screen coordinate system

Window to Viewport Mapping

= Would like to:
= Specify drawing in world coordinates
= Display in screen coordinates
= Need some sort of mapping
= Called Window-to-viewport mapping
m Basic W-to-V mapping steps:
= Define a world window
= Define aviewport
= Compute a mapping from window to viewport

Window to Viewport Mapping (OpenGL Way)

m Define window (world coordinates):
m gluOrtho2D(left, right, bottom top)
= Side note: gluOrtho2D is member of glu library
mn Define Viewport (screen coordinates):
gl Viewport(left, bottom right-left, top-bottom
= All subsequent drawings are automatically mapped
» Do mapping before any drawing (gl Begin(), gl End())
= Two more calls you will encounter to set up matrices:
= gl Matri xMode(GL_PRQIECTI ON)
m gl Loadl dentity()
» Type in as above for now, will explain later
m Ref: Hill Practice exercise 3.2.1, pg 86

Window to Viewport Mapping (Our Way)

= How is window-to-viewport mapping done?
m Trigonometry: derive Window-to-Viewport mapping
m Basic principles:
= Calculate ratio: proportional mapping ratio (NO distortion)
= Account for offsets in window and viewport origins
= You are given:
= World Window: W.R, W.L, W.T, W.B
= Viewport: V.L, V.R, V.B, V.T
= A point (x,y) in the world

m Required: Calculate corresponding point (s.X, s.y) in screen
coordinates

Window to Viewport Mapping (Our Way)

3 Sxy) 3 . G (sx.sy)
ML L=
\AAl —_— >" -
“———WRWr —— N —RvE—
(x - W.L) & - V.L
W.R-W.L V.R-V.L
(y-W.B) _§-VvB
WT-W.B VTIT-VB

Window to Viewport Mapping (Our Way)
Solve for Sx, Sy in terms of x, y:

W.R-W.L V.R-V.L
(y-W.B) _ & -V.B

W.T-W.B V.T - V.B

(x - W .L) Sx -V .L

V.R-V.L g V.R-V.L
x =& O - & w.L-v.L?

W R-W Lg EWR-W.L

V.T-V.B VT-V.B ;
sy = & 2y - B w.B-v.B2

EWT-WBg &WT-WB 2

Window to Viewport Mapping (Our Way)

Solve, given the formulas:

VR-V.L V.R-V.L 5
S = x- & wW.L-v.L?
WR-W.L &WR-W.L P
VT-V.B VT-V.B 5
Sy = y- & w.B-v.BY
WIT-W.B WT-wW.B P

What is (Sx,Sy) for point (3.4,1.2) in world coordinates if:
W =(W.LWRWBWT)=(0402)

V =(V.LVRV.BV.T) = (60,38080,240)

Window to Viewport Mapping (Our Way)

Solution:
V.R-V.L V.R-V.L 5

S = x- & w.L-v.L®
W R-W.L W R-W L o
VI-V.B VI-V.B 5

Sy = y- & w.B-v.BY
WT-W.B EWT-wW.B p

Sx=80x +60 =332 Sy =80x+80 =176

Hence, point (3.4,1.2) in world = point (332,176) on screen

More W-to-V Mapping

= W-to-V Applications:
= Zooming: in on a portion of object
= Tiling: W-to-V in loop, adjacent viewports
= Flipping drawings
» Mapping different window and viewport aspect ratios
(W/H)
= Exa

o |

Viewport

Window Important: Please read on your own,
section 3.2.2 on pg. 92 of Hill

Tiling: Example 3.2.4 of Hill (pg. 88)

= Problem: want to tile dino.dat in 5x5 across screen
= Code:

gl uOrtho2D(0, 640.0, 0, 440.0);

for(int i=0;i < 5;i++)

{
for(int j = 0;j < 5; j++)
{
gl Viewport(i * 64, j * 44; 64, 44);
drawPol yl i neFi | e(di no.dat) ;
}
}

Zooming

= Problem:
= dino.dat is currently drawn on entire screen.
= User wants to zoom into just the head
= Specifies selection by clicking top -left and bottom -right
corners
= Solution:
= 1: Program accepts two mouse clicks as rectangle corners
2: Calculate mapping A of current screen to all of dino. dat
3: Use mapping A to refer screen rectangle to world
= 4: Sets world to smaller world rectangle
5: Remaps small rectangle in world to screen viewport

Using mouse to select screen rectangle for
zooming (Example 2.4.2, pg 64) for zooming

void myMouse(int button, int state, int x, inty)
{
static GLint corner[2];
static int numCorners = 0; /Il initialize
i f(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
{
corner[nunCorners].x = Xx;
corner[nunCorners].y =vy;
numCor ner s++;
if(numCorners == 2)
{
gl Vi ewport(corner[0], corner[1]);
nunCorners = 0;

Cohen-Sutherland Clipping

» Frequently want to view only a portion of the picture

m For instance, in dino.dat, you can select to view/zoom in
on only the dinosaur’s head

= Clipping: eliminate portions not selected

m OpenGL automatically clips for you

= We want algorithm for clipping

= Classical algorithm: Cohen-Sutherland Clipping

= Picture has 1000s of segments : efficiency is important

Clipping Points

(Xmax, ymax)

(xmin, ymin)

m Determine whether a point
(x,y) is inside or outside of
the world window?

If (xmin <= x <= xmax
and (ymin <= y <= ymax)

then the point (x,y) is inside
else the point is outside

Clipping Lines

2 ,{<max, ymax)

~

1

(xmin, ymin)

m 3 cases:

= Case 1: All of line in
= Case 2: All of line out
= Case 3: Partin, part out

Clipping Lines: Trivial Accept

(ATTax;

—~—

~—

p2

(Xmin, Ymin)

Ymax)

Case 1: All of line in
Test line endpoints:

Xmin <= P1.x, P2.x <= Xmax
and

YMM <=PLy, PZ.y <= YMa&

m Note: simply comparing x,y
values of endpoints to x,y
values of rectangle

Result: trivially accept.

Draw line in completely

Clipping Lines: Trivial Reject

_—

p2

Case 2: All of line out
Test line endpoints:

pl.x, p2.x <= Xmin OR
pl.x, p2.x >= Xmax OR
pl.y, p2.y <= ymin OR

ply, p2.y >= ymax

Note: simply comparing x,y
values of endpoints to x,y
values of rectangle

Result: trivially reject.
Don’tdraw line in

Clipping Lines: Non-Trivial Cases

m Case 3: Part in, part out

= Two variations:

= One point in, other out
= Both points out, but part of
line cuts through viewport

m Need to find inside segments

m Use similar triangles to figure
out length of inside segments

int

{

Cohen-Sutherland pseudocode (fig. 3.23)

cli pSegnent (Poi nt2& pl, Point2& p2, Real Rect W
do{
if(trivial accept) return 1; // whole line survives
if(trivial reject) return O; // no portion survives
/1" now chop
if(pl is outside)
/1 find surviving segnment
el se(p2 is outside)
/1 find surviving segnment
Jwhile(1)

Cohen-Sutherland Implementation

m Breaks space into 4-bit words
= Trivial accept: both FFFF
= Trivial reject: T in same position
= Chop everything else

| |
TTER | FTFE IFTTF

TFFE EFFF EFTF m Systematically chops against
== ——= four edges
| |
TeeT ' FFET VEETT m Can use C/C++ bit operations

= Important: read Hill 3.3

Parametric Equations

m Implicit form
F(xy)=0

m Parametric forms:
= points specified based on single parameter value
= Typical parameter: timet

P@t) =P +(P- P)*t 0£tE£L
m Some algorithms work in parametric form

= Clipping: exclude line segment ranges

= Animation: Interpolate between endpoints by varying t

References

= Hill, 3.1 - 3.3, 3.8

