CS 4731: Computer Graphics
Midterm review

Emmanuel Agu

Announcement

m Extra help session tomorrow (Wednesday), FL 311, 5-6pm

m TA’s will be run the session. Answer any final questions
you have

Exam Overview

» Thursday, Sept. 25, in-class
= Will cover up to lecture 12 (lecture 12/24)
m Can bring:
= One page cheat-sheet
= Calculator
n Will test:
= Theoretical concepts
= Mathematics
= Algorithms
= Programming

= OpenGL knowledge (program structure and some commands)

What really am | Testing?

m Understanding of on concepts (NOT only programming)

m That you can plug in numbers by hand to check your
programs

m Understanding of programming (pseudocode/syntax)
m That you did the projects

m That you understand what you did in projects

General Advise

m Read your projects and refresh memory of what you did

» Read the slides: worst case — if you understand slides,
you’re more than 50% prepared

m Focus on Mathematical results, concepts, algorithms

= Plug numbers: calculate by hand

m Should be able to predict subtle changes to algorithm..
What ifs?..

m Past exams: my exams will be most similar to last year’s
exam

m Every lecture has references. Look at refs to focus reading

Grading Policy

m | usually do ALL grading myself

m Gives me a measure of where class really is, taylor rest of
class

m Give you all the points, take away only what | have to

= In time constraints, laying out outline of solution gets you
healthy chunk of points

m Try to write something for each question

Introduction

Motivation for CG

Uses of CG (simulation, image processing, movies, viz, etc)
Elements of CG (polylines, raster images, filled regions, etc)
Device dependent graphics libraries (OpenGL, DirectX, etc)

OpenGL/GLUT

n High-level:
= What is OpenGL?
= What is GLUT?
= Functionality, how do they work together?

= Design features: low-level API, event-driven, portability,
etc

= Sequential Vs. Event-driven programming

m OpenGL/GLUT program structure (create window, init,
callback registration, etc)

m GLUT callback functions (registration and response to
events)

OpenGL Drawing

m gIBegin(), glEnd(), glVertex()
= OpenGL :

Drawing primitives: GL_POINTS, GL_LINES, etc (should be
conversant with the behaviors of major primitives)

Command format

Data types

Interaction: keyboard, mouse (GLUT_LEFT_BUTTON, etc)
OpenGL state

= No miniGL-specific questions (homegrown)

2D Graphics: Coordinate Systems

Screen coordinate system/Viewport
World coordinate system/World window
Window to Viewport mapping:

Motivation: why is it necessary?

OpenGL way: gluOrtho2D(l eft, right, bottom top)
glviewport (I eft, bottom right-left, top-bottom

Our way: calculate mapping

Applications: tiling, zooming, flipping, maintaining aspect ratio

Cohen-sutherland clipping

algorithm operation
Why and how to do trivial accept/reject, chop
Given vertices, clip!!

Fractals

» What are fractals?

Self similarity
Applications (clouds, grass, terrain etc)

m Koch curves/snowflakes

How to build K1, K2, etc... S1, S2, etc.
Pseudocode : how to draw

= Mandelbrot set

Complex numbers: s, ¢, orbits, complex number math
Dwell function

Assigning colors

Mapping mandelbrot to screen

Points, Scalars Vectors

m Vector Operations:

Addition, subtraction, scaling
Magnitude

Normalization

Dot product
Cross product

Finding angle between two vectors

= Standard unit vector
» Normal of a plane

Transforms

Homogeneous coordinates Vs. Ordinary coordinates
2D/3D affine transforms: rotation, scaling, translation,
shearing

Should be able to take problem description and build
transforms and apply to vertices

2D: rotation (scaling, etc) about arbitrary center:

= T(Px,Py) R(q) T(-Px,-Py) * P

Composing transforms

OpenGL transform commands (glRotate, glTranslate, etc)
3D rotation:

= x-roll, y-roll, z-roll, about arbitrary vector (Euler theorem) if

Modeling

m GLUT models (teapot, sphere, cube, etc)

m Overview of openGL
= Modelview matrix (M and V part)
= Projection matrix
= Clipping
= Viewport

= Should know high-level what each stage does

m OpenGL matrices: what are they? How to select, initialize,
compose

m Synthetic camera basics

= Hierachical modeling using OpenGL (glPopMatrix,
glPushMatrix)

given azimuth, latitude of vector or (X, y, z) of normalized vector = SDL
Matrix multiplication!!
Modeling using Polygonal Meshes 3D Viewing

= Mesh representations

= Data structures (Vertex list, Normal list, face list, indexing)
= Finding normal:

m Cross product method

= Newell method

= Should be able to plug number and get answer
= Pseudocode for manipulating, drawing mesh

m gluLookat(Eye, COI, Up) to set camera
= Pitch: nose up-down
= Roll: roll body of plane
= Yaw: move nose side to side
= Projection:
= View volume, near plane, far plane
= gluPerspective(fovy, aspect, near, far) or
= glFrustum (left, right, bottom, top, near, far)
= glOrtho(left, right, bottom, top, near, far)

3D viewing

e
> Modeling Viewing Projection

I \L (] Transformation | Transformation Transformation

O =

Viewport
Transformation

Display

3D viewing: Eye Coordinate Frame

Hye space origin:

= Given Eye.x , Eye.y, Eye.z)
gluLookat(Eye, COI, up_vector)
How do you build V part of
Modelview matrix?

Hasis vectors:

(eye —COIl) / | eye — COIl|
(V_upx n)/|V_upxn]|
nxu

3D Viewing: World to Eye Transformation

= Transformation matrix (Mwze) ?

P’ = Mw2ex P
Mu_ 1. Come up with the transformation
y - sequence to move eye coordinate
[»n frame to the world
world 2. And then apply this sequence to the
X point P in a reverse order
[S

3D Viewing: World to Eye Transformation

= Transformation order: apply the transformation to the
object in a reverse order - translation first, and then

rotate
ux uy ux O 0 0 -ex
_ v vy vz 0 1 0 -ey
Mwze = [« ny nz 0 0 1 -ez
0O 0 O 1 0O 0 O 1
VA
»
A Cm
(ex,ey,ez)
worl,
¥ x

