
1

CS 4731: Computer Graphics
Midterm review

Emmanuel Agu

Announcement

n Extra help session tomorrow (Wednesday), FL 311, 5-6pm
n TA’s will be run the session. Answer any final questions 

you have

Exam Overview

n Thursday, Sept. 25, in-class
n Will cover up to lecture 12 (lecture 12/24)
n Can bring:

n One page cheat -sheet

n Calculator

n Will test:
n Theoretical concepts
n Mathematics

n Algorithms

n Programming
n OpenGL knowledge (program structure and some commands)

What really am I Testing?

n Understanding of on concepts (NOT only programming)
n That you can plug in numbers by hand to check your 

programs
n Understanding of programming (pseudocode/syntax)
n That you did the projects
n That you understand what you did in projects



2

General Advise

n Read your projects and refresh memory of what you did
n Read the slides: worst case – if you understand slides, 

you’re more than 50% prepared
n Focus on Mathematical results, concepts, algorithms
n Plug numbers: calculate by hand
n Should be able to predict subtle changes to algorithm.. 

What ifs?..
n Past exams: my exams will be most similar to last year’s 

exam
n Every lecture has references. Look at refs to focus reading

Grading Policy

n I usually do ALL grading myself
n Gives me a measure of where class really is, taylor rest of 

class
n Give you all the points, take away only what I have to
n In time constraints, laying out outline of solution gets you 

healthy chunk of points
n Try to write something for each question

Introduction

n Motivation for CG
n Uses of CG (simulation, image processing, movies, viz, etc)
n Elements of CG (polylines, raster images, filled regions, etc)
n Device dependent graphics libraries (OpenGL, DirectX, etc)

OpenGL/GLUT

n High-level: 
n What is OpenGL?
n What is GLUT?

n Functionality, how do they work together?

n Design features: low-level API, event-driven, portability, 
etc

n Sequential Vs. Event-driven programming
n OpenGL/GLUT program structure (create window, init, 

callback registration, etc)
n GLUT callback functions (registration and response to 

events)



3

OpenGL Drawing

n glBegin( ), glEnd( ), glVertex( )
n OpenGL :

n Drawing primitives: GL_POINTS, GL_LINES, etc (should be 
conversant with the behaviors of major primitives)

n Command format

n Data types
n Interaction: keyboard, mouse (GLUT_LEFT_BUTTON, etc)

n OpenGL state

n No miniGL-specific questions (homegrown)

2D Graphics: Coordinate Systems

n Screen coordinate system/Viewport
n World coordinate system/World window
n Window to Viewport mapping:

n Motivation: why is it necessary?

n OpenGL way: gluOrtho2D(left, right, bottom, top) 
glViewport (left, bottom, right -left, top-bottom)

n Our way: calculate mapping
n Applications: tiling, zooming, flipping, maintaining aspect rati o

n Cohen-sutherland clipping
n algorithm operation

n Why and how to do trivial accept/reject, chop
n Given vertices, clip!! 

Fractals

n What are fractals?
n Self similarity
n Applications (clouds, grass, terrain etc)

n Koch curves/snowflakes
n How to build K1, K2, etc… S1, S2, etc.

n Pseudocode : how to draw

n Mandelbrot set
n Complex numbers: s, c, orbits, complex number  math

n Dwell function
n Assigning colors

n Mapping mandelbrot to screen

Points, Scalars Vectors

n Vector Operations:
n Addition, subtraction, scaling
n Magnitude

n Normalization

n Dot product
n Cross product

n Finding angle between two vectors

n Standard unit vector
n Normal of a plane



4

Transforms

n Homogeneous coordinates Vs. Ordinary coordinates
n 2D/3D affine transforms: rotation, scaling, translation, 

shearing
n Should be able to take problem description and build 

transforms and apply to vertices
n 2D: rotation (scaling, etc) about arbitrary center: 

n T(Px,Py) R(θ ) T(-Px,-Py) * P

n Composing transforms
n OpenGL transform commands (glRotate, glTranslate, etc)
n 3D rotation: 

n x-roll, y -roll, z -roll, about arbitrary vector (Euler theorem) if 
given azimuth, latitude of vector or (x, y, z) of normalized vec tor

n Matrix multiplication!!

Modeling

n GLUT models (teapot, sphere, cube, etc)
n Overview of openGL

n Modelview matrix (M and V part)
n Projection matrix
n Clipping
n Viewport

n Should know high-level what each stage does
n OpenGL matrices: what are they? How to select, initialize, 

compose
n Synthetic camera basics
n Hierachical modeling using OpenGL (glPopMatrix, 

glPushMatrix)
n SDL

Modeling using Polygonal Meshes

n Mesh representations
n Data structures (Vertex list, Normal list, face list, indexing)

n Finding normal:
n Cross product method

n Newell method

n Should be able to plug number and get answer

n Pseudocode for manipulating, drawing mesh

3D Viewing

n gluLookat(Eye, COI, Up ) to set camera
n Pitch: nose up-down
n Roll: roll body of plane

n Yaw: move nose side to side

n Projection:
n View volume, near plane, far plane

n gluPerspective(fovy, aspect, near, far) or
n glFrustum(left, right, bottom, top, near, far)

n glOrtho(left, right, bottom, top, near, far) 



5

3D viewing

Modeling                 Viewing                        Projection              
Transformation    Transformation           Transformation

Viewport 
Transformation   

Display       

3D viewing: Eye Coordinate Frame

n Given 

gluLookat(Eye, COI, up_vector)
How do you build V part of

Modelview matrix?

eye
COI

n

u
v

V_up

Eye space origin: 
(Eye.x , Eye.y, Eye.z)

Basis vectors: 

n =     (eye – COI) / | eye – COI| 
u =     (V_up x  n ) / | V_up x n | 
v =      n x  u

3D Viewing: World to Eye Transformation

n Transformation matrix (Mw2e) ?

P’ =  Mw2e x  P  

uv

n

world

x

y

z

P

1. Come up with the transformation
sequence to move eye coordinate 
frame to the world

2. And then apply this sequence to the 
point P in a reverse order 

3D Viewing: World to Eye Transformation

n Transformation order: apply the transformation to the 
object in a reverse order - translation first, and then 
rotate

Mw2e = 

uv

n

world
x

y

z

(ex,ey,ez)

ux  uy  ux 0          1   0   0   -ex 
vx  vy vz   0          0   1   0   -ey
nx  ny nz   0         0   0   1   -ez
0   0    0     1         0   0   0 1 


