
Computer Graphics
CS 4731 Lecture 24

Curves

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

So Far…

 Dealt with straight lines and flat surfaces

 Real world objects include curves

 Need to develop:

 Representations of curves (mathematical)

 Tools to render curves

Interactive Curve Design

 Mathematical formula unsuitable for designers

 Prefer to interactively give sequence of points
(control points)

 Write procedure:

 Input: sequence of points

 Output: parametric representation of curve

Interactive Curve Design

 1 approach: curves pass through control points (interpolate)

 Example: Lagrangian Interpolating Polynomial

 Difficulty with this approach:
 Polynomials always have “wiggles”

 For straight lines wiggling is a problem

 Our approach: approximate control points (Bezier, B-Splines)

De Casteljau Algorithm

 Consider smooth curve that approximates sequence
of control points [p0,p1,….]

 Blending functions: u and (1 – u) are non-negative
and sum to one

10)1()(uppuup 10 u

System generates

this point using math

Artist provides

these points

 Now consider 3 points

 2 line segments, P0 to P1 and P1 to P2

De Casteljau Algorithm

1001)1()(uppuup
2111)1()(uppuup

De Casteljau Algorithm

)()1()(1101 uuppuup

2

2

10

2))1(2()1(pupuupu

2

02)1()(uub

Blending functions for degree 2 Bezier curve

)1(2)(12 uuub
2

22)(uub

)(02 ub)(12 ub)(22 ub

Substituting known values of and)(01 up)(11 up

Note: blending functions, non-negative, sum to 1

De Casteljau Algorithm

 Extend to 4 control points P0, P1, P2, P3

 Final result above is Bezier curve of degree 3

3

2

2

1

2

0

3))1(3())1(3()1()(upuupuupuup

)(23 ub)(03 ub)(13 ub)(33 ub

De Casteljau Algorithm

 Blending functions are polynomial functions called
Bernstein’s polynomials

3

33

2

23

2

13

3

03

)(

)1(3)(

)1(3)(

)1()(

uub

uuub

uuub

uub

3

2

2

1

2

0

3))1(3())1(3()1()(upuupuupuup

)(23 ub)(03 ub)(13 ub)(33 ub

Subdividing Bezier Curves

 OpenGL renders flat objects

 To render curves, approximate with small linear
segments

 Subdivide surface to polygonal patches

 Bezier Curves can either be straightened or curved
recursively in this way

Bezier Surfaces

 Bezier surfaces: interpolate in two dimensions

 This called Bilinear interpolation

 Example: 4 control points, P00, P01, P10, P11,
 2 parameters u and v

 Interpolate between
 P00 and P01 using u

 P10 and P11 using u

 P00 and P10 using v

 P01 and P11 using v

))1(())1)((1(),(11100100 uppuvuppuvvup

Problems with Bezier Curves

 Bezier curves elegant but to achieve smoother curve

 = more control points

 = higher order polynomial

 = more calculations

 Global support problem: All blending functions are
non-zero for all values of u

 All control points contribute to all parts of the curve

 Means after modelling complex surface (e.g. a ship), if
one control point is moves, recalculate everything!

B-Splines

 B-splines designed to address Bezier shortcomings

 B-Spline given by blending control points

 Local support: Each spline contributes in limited range

 Only non-zero splines contribute in a given range of u

m

i

ii puBup
0

)()(

B-spline blending functions, order 2

NURBS

 Non-uniform Rational B-splines (NURBS)

 Rational function means ratio of two polynomials

 Some curves can be expressed as rational functions but not as
simple polynomials

 No known exact polynomial for circle

 Rational parametrization of unit circle on xy-plane:

0)(

1

2
)(

1

1
)(

2

2

2

uz

u

u
uy

u

u
ux

Tesselation

 Previously: Pre-generate mesh versions offline

 Tesselation shader unit new to GPU in DirectX 10 (2007)
 Subdivide faces on-the-fly to yield finer detail, generate new vertices,

primitives

 Mesh simplification/tesselation on GPU = Real time LoD

tesselation

Simplification

Far = Less detailed

mesh
Near = More detailed

mesh

Tessellation Shaders

 Can subdivide curves, surfaces on the GPU

Where Does Tesselation Shader Fit?

Fixed number of vertices in/out

Can change number of vertices

Geometry Shader

 After Tesselation shader. Can

 Handle whole primitives

 Generate new primitives

 Generate no primitives (cull)

References

 Hill and Kelley, chapter 11

 Angel and Shreiner, Interactive Computer Graphics,
6th edition, Chapter 10

 Shreiner, OpenGL Programming Guide, 8th edition

