Computer Graphics
CS 4731 Lecture 24
Curves

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

So Far...

e Dealt with straight lines and flat surfaces
e Real world objects include curves
e Need to develop:

Representations of curves (mathematical)
Tools to render curves

Interactive Curve Design s

e Mathematical formula unsuitable for designers

e Prefer to interactively give sequence of points
(control points)
e Write procedure:

e Input: sequence of points
e Output: parametric representation of curve

Interactive Curve Design s

e 1 approach: curves pass through control points (interpolate)
e Example: Lagrangian Interpolating Polynomial

e Difficulty with this approach:
e Polynomials always have “wiggles”
e Forstraight lines wiggling is a problem

e Our approach: approximate control points (Bezier, B-Splines)

Ly S

[nterpolation Approximation

De Casteljau Algorithm .

e Consider smooth curve that approximates sequence
of control points [p0,p1,....]

p(u) = (@—-u) p, +up, 0<u<l

P
Artist provides System generates
these points / this point using math
plu)

Po

e Blending functions: u and (1 — u) are non-negative
and sum to one

De Casteljau Algorithm .

e Now consider 3 points

e 2 line segments, PO to P1 and P1 to P2

po1(u) — (1_U) Py +UP,

Po

piu)

P11 (U) = (1—-u) p, +up,

Po P

De Casteljau Algorithm
Substituting known values of Py;(U) and p,,(u)
p(u) — (1_ U) Po1 T upll(u)
= (1—-u)’[p, f+ Ru@—u))p, + uz\p2
Do, (U) by, (u) b,,(U)
Blending functions for degree 2 Bezier curve
D5, (U) = (L—-u)* b, (u)=2u(l-u) b,,(u) =u*

Note: blending functions, non-negative, sum to 1

De Casteljau Algorithm

e Extend to 4 control points PO, P1, P2, P3

p(u) = (1-u)’

/

g5 (U)

Pyyu)

Po

Po

- (Bu(l—u)?

T

b13(u)

P3

) Py

+ (3u2(1—u)E

0,5(u)

e Final result above is Bezier curve of degree 3

+ U

3

b,,(u)

De Casteljau Algorithm .

p(u) = (L-u)’p, + Bud—u)* p,f+ (3U2(1—U)E+ u®

/ |

Bys (U) b, 5(U) b, (U) b,,(u)
e Blending functions are polynomial functions called
Bernstein’s polynomials

03 (U) = (1-u)’
0,,(U) =3u(l-u)?
,.(U) =3u’(1-u)

0,5(U) = u’

Subdividing Bezier Curves s

e OpenGL renders flat objects

e To render curves, approximate with small linear
segments

e Subdivide surface to polygonal patches

e Bezier Curves can either be straightened or curved
recursively in this way

P P2

P.;,u p3

Bezier Surfaces e

e Bezier surfaces: interpolate in two dimensions
e This called Bilinear interpolation
e Example: 4 control points, POO, PO1, P10, P11,

e 2 parametersuandyv

e Interpolate between
e POO and P01 using u
e P10and P11 usingu
e POO and P10 using v
e PO1andP11 usingv

p(u,v) = A=V)((L—U) Pgy +UpPgy) +V((L—U) Pyp +UPy,)

Problems with Bezier Curves .

e Bezier curves elegant but to achieve smoother curve

e =more control points bis(w)

bys(u) bys(u)

e = higher order polynomial

e = more calculations
0 u |

e Global support problem: All blending functions are
non-zero for all values of u

e All control points contribute to all parts of the curve

e Means after modelling complex surface (e.g. a ship), if
one control point is moves, recalculate everything!

B-Splines

e B-splines designed to address Bezier shortcomings

e B-Spline given by blending control points

e Local support: Each spline contributes in limited range

e Only non-zero splines contribute in a given range of u

p(u) = B, ()P

L By(u)
_ N\ s 1®) | : : :
/\ Bs(u) E ; E E

—/ N_Bj) lllk Ulk 1 “Ik*‘l Ulk-r-s

B-spline blending functions, order 2

NURBS

e Non-uniform Rational B-splines (NURBS)
e Rational function means ratio of two polynomials

e Some curves can be expressed as rational functions but not as
simple polynomials

e No known exact polynomial for circle

e Rational parametrization of unit circle on xy-plane:

1—u?

X(u) =
() 1+ u?
2U

u:
y(u) o

Tesselation oo

tesselation

Near = More detailed
mesh

Far = Less detailed
mesh

d Schrader,2000]

[Zorin an:

Simplification

e Previously: Pre-generate mesh versions offline

e Tesselation shader unit new to GPU in DirectX 10 (2007)
e Subdivide faces on-the-fly to yield finer detail, generate new vertices,
primitives
e Mesh simplification/tesselation on GPU = Real time LoD

Tessellation Shaders

e Can subdivide curves, surfaces on the GPU

Lines

Triangles

Where Does Tesselation Shader Fit?

Fixed number of vertices in/out ~

|| Vertex Shader ||
I

| Primitive Assembly ||

Can change number of vertices —

_ Tessellation Control Shader ||

~

Tessellation Primitive Generator |l_

| y

-—->

‘ Tessellation Evaluation Shaderl

Primitive Assembly ||*

e EE e —————=-

= Fixed Function

= Programmable

Geometr‘;f Shader ||

Primitive Assembly "

Rasterizer

L]
|| Fragment Shader

Geometry Shader

e After Tesselation shader. Can
e Handle whole primitives
e Generate new primitives
e Generate no primitives (cull)

Vertex Shader “
!

Primitive Assembly |

......

Tessellation Control Shader l

|

Tessellation Primitive Generator ﬂ

—————
1

| Tessellation Evaluation Shader'

Primitive Assembly |I*

- Geometry Shader “
|

Primitive Assembly |

I

Rasterizer |

X

| Fragment Shader |

References

e Hill and Kelley, chapter 11

e Angel and Shreiner, Interactive Computer Graphics,
6t edition, Chapter 10

e Shreiner, OpenGL Programming Guide, 8t edition

