Recall: Line drawing algorithm

- Programmer specifies (x, y) of end pixels
- Need algorithm to determine pixels on line path

$$
\text { Line: }(3,2) \text {-> }(9,6)
$$

Which intermediate pixels to turn on?

Bresenham's Line-Drawing Algorithm

- Problem: Given endpoints ($A x, A y$) and ($B x, B y$) of line, determine intervening pixels
- First make two simplifying assumptions (remove later):
- $(A x<B x)$ and
- $(0<m<1)$
- Define
- Width W = Bx - Ax
- Height H = By - Ay

Bresenham's Line-Drawing Algorithm

- Based on assumptions $(\mathrm{Ax}<\mathrm{Bx})$ and $(0<m<1)$
- W, H are +ve
- $\mathrm{H}<\mathrm{W}$
- Increment x by +1 , y incr by +1 or stays same
- Midpoint algorithm determines which happens

Bresenham's Line-Drawing Algorithm

What Pixels to turn on or off?
Consider pixel midpoint $M(M x, M y)=(x+1, y+1 / 2)$
Build equation of actual line, compare to midpoint

Build Equation of the Line

- Using similar triangles:

$$
\frac{y-A y}{x-A x}=\frac{H}{W}
$$

$$
\begin{gathered}
H(x-A x)=W(y-A y) \\
-W(y-A y)+H(x-A x)=0
\end{gathered}
$$

- Above is equation of line from (Ax, Ay) to (Bx, By)
- Thus, any point (x, y) that lies on ideal line makes eqn $=0$
- Double expression (to avoid floats later), and call it F(x,y)

$$
F(x, y)=-2 W(y-A y)+2 H(x-A x)
$$

Bresenham's Line-Drawing Algorithm

- So, $F(x, y)=-2 W(y-A y)+2 H(x-A x)$
- Algorithm, If:
- $F(x, y)<0,(x, y)$ above line
- $F(x, y)>0,(x, y)$ below line
- Hint: $F(x, y)=0$ is on line
- Increase y keeping x constant, $F(x, y)$ becomes more negative

Bresenham's Line-Drawing Algorithm

- Example: to find line segment between $(3,7)$ and $(9,11)$

$$
\begin{aligned}
F(x, y) & =-2 W(y-A y)+2 H(x-A x) \\
& =(-12)(y-7)+(8)(x-3)
\end{aligned}
$$

- For points on line. E.g. (7, 29/3), $F(x, y)=0$
- $A=(4,4)$ lies below line since $F=44$
- $B=(5,9)$ lies above line since $F=-8$

Bresenham's Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint $\mathrm{M}(\mathrm{Mx}, \mathrm{My})=(\mathrm{x} 0+1, \mathrm{Y} 0+1 / 2)$

Can compute $\mathrm{F}(\mathrm{x}, \mathrm{y})$ incrementally

Initially, midpoint $M=(A x+1, A y+1 / 2)$

$$
F(M x, M y)=-2 W(y-A y)+2 H(x-A x)
$$

i.e. $F(A x+1, A y+1 / 2)=2 H-W$

Can compute $F(x, y)$ for next midpoint incrementally If we increment to $(x+1, y)$, compute new $F(M x, M y)$

$$
F(M x, M y)+=2 H
$$

i.e. $F(A x+2, A y+1 / 2)$

$$
\begin{gathered}
-F(A x+1, A y+1 / 2) \\
=2 H
\end{gathered}
$$

Can compute $\mathrm{F}(\mathrm{x}, \mathrm{y})$ incrementally

If we increment to $(x+1, y+1)$

$$
F(M x, M y)+=2(H-W)
$$

$(A x+2, A y+3 / 2)$
i.e. $F(A x+2, A y+3 / 2)-F(A x+1, A y+1 / 2)=2(H-W)$

Bresenham's Line-Drawing Algorithm

```
Bresenham(IntPoint a, InPoint b)
{// restriction: a.x < b.x and 0 < H/W < 1
    int y = a.y, W = b.x - a.x, H = b.y - a.y;
    int F=2* H-W; // current error term
    for(int x = a.x; x <= b.x; x++)
    {
    setpixel at (x,y); // to desired color value
        if F < 0 // y stays same
            F = F + 2H;
        else{
            Y++, F = F + 2(H - W) // increment y
        }
    }
}
- Recall: \(F\) is equation of line
```


Bresenham's Line-Drawing Algorithm

- Final words: we developed algorithm with restrictions $0<m<1$ and $A x<B x$
- Can add code to remove restrictions
- When $A x>B x$ (swap and draw)
- Lines having $m>1$ (interchange x with y)
- Lines with $\mathrm{m}<0$ (step $\mathrm{x}++$, decrement y not incr)
- Horizontal and vertical lines (pretest a.x = b.x and skip tests)

Computer Graphics
 CS 4731 Lecture 23
 Polygon Filling \& Antialiasing

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Defining and Filling Regions of Pixels

- Methods of defining region
- Pixel-defined: specifies pixels in color or geometric range
- Symbolic: provides property pixels in region must have
- Examples of symbolic:
- Closeness to some pixel
- Within circle of radius R
- Within a specified polygon

Pixel-Defined Regions

- Definition: Region R is the set of all pixels having color C that are connected to a given pixel S
- 4-adjacent: pixels that lie next to each other horizontally or vertically, NOT diagonally
- 8-adjacent: pixels that lie next to each other horizontally, vertically OR diagonally
- 4-connected: if there is unbroken path of 4-adjacent pixels connecting them
- 8-connected: unbroken path of 8-adjacent pixels connecting them

Recursive Flood-Fill Algorithm

- Recursive algorithm
- Starts from initial pixel of color, intColor
- Recursively set 4-connected neighbors to newColor
- Flood-Fill: floods region with newColor
- Basic idea:
- start at "seed" pixel (x, y)
- If (x, y) has color intColor, change it to newColor
- Do same recursively for all 4 neighbors

	$(x, y+1)$	
$(x-1, y$	(x, y)	$(x+1, y)$
	$(x, y-1)$	

Recursive Flood-Fill Algorithm

- Note: getPixel(x, y) used to interrogate pixel color at (x, y)

```
void floodFill(short x, short y, short intColor)
{
    if(getPixel(x, y) == intColor)
    {
        setPixel(x, y);
        floodFill(x - 1, y, intColor); // left pixel
        floodFill(x + 1, Y, intColor); // right pixel
        floodFill(x, y + 1, intColor); // down pixel
        floodFill(x, y - 1, intColor); // up pixel
    }
}
```


Recursive Flood-Fill Algorithm

- Recursive flood-fill is blind
- Some pixels retested several times
- Region coherence is likelihood that an interior pixel mostly likely adjacent to another interior pixel
- Coherence can be used to improve algorithm performance
- A run: group of adjacent pixels lying on same scanline
- Fill runs(adjacent, on same scan line) of pixels

Region Filling Using Coherence

- Example: start at s, initial seed
c)

b)


```
In row above find reachable interior runs Push address of their rightmost pixels Do same for row below current run
\}
```

Push address of seed pixel onto stack while(stack is not empty)
\{
Pop stack to provide next seed Fill in run defined by seed

Pseudocode:


```
while(stack is not empty)
{
    Pop stack to provide next seed
            ill in run defined by seed
    In row above find reachable interior runs
    Do same for row below current run
```

 t if
 Note: algorithm most efficient if there is span coherence (pixels on scanline have same value) and scan-liine coherence (consecutive scanlines similar)

Filling Polygon-Defined Regions

- Problem: Region defined polygon with vertices $\mathrm{Pi}=(\mathrm{Xi}, \mathrm{Yi})$, for $\mathrm{i}=1 \ldots \mathrm{~N}$, specifying sequence of $\mathrm{P}^{\prime} \mathrm{s}$ vertices

Filling Polygon-Defined Regions

- Solution: Progress through frame buffer scan line by scan line, filling in appropriate portions of each line
- Filled portions defined by intersection of scan line and polygon edges
- Runs lying between edges inside P are filled
- Pseudocode:

```
for(each scan Line L)
{
    Find intersections of L with all edges of P
    Sort the intersections by increasing x-value
    Fill pixel runs between all pairs of intersections
}
```


Filling Polygon-Defined Regions

- Example: scan line y = 3 intersects 4 edges e3, e4, e5, e6
- Sort x values of intersections and fill runs in pairs
- Note: at each intersection, inside-outside (parity), or vice versa

Data Structure

Filling Polygon-Defined Regions

- Problem: What if two polygons A, B share an edge?
- Algorithm behavior could result in:
- setting edge first in one color and the another
- Drawing edge twice too bright
- Make Rule: when two polygons share edge, each polygon owns its left and bottom edges
- E.g. below draw shared edge with color of polygon B

Filling Polygon-Defined Regions

- Problem: How to handle cases where scan line intersects with polygon endpoints to avoid wrong parity?
- Solution: Discard intersections with horizontal edges and with upper endpoint of any edge

Antialiasing

- Raster displays have pixels as rectangles
- Aliasing: Discrete nature of pixels introduces "jaggies"
a)

b)

Antialiasing

- Aliasing effects:
- Distant objects may disappear entirely
- Objects can blink on and off in animations
- Antialiasing techniques involve some form of blurring to reduce contrast, smoothen image
- Three antialiasing techniques:
- Prefiltering
- Postfiltering
- Supersampling

Prefiltering

- Basic idea:
- compute area of polygon coverage
- use proportional intensity value
- Example: if polygon covers $1 / 4$ of the pixel
- Pixel color $=1 / 4$ polygon color $+3 / 4$ adjacent region color
- Cons: computing polygon coverage can be time consuming

Supersampling

- Assumes we can compute color of any location (x, y) on screen
- Sample (x, y) in fractional (e.g. $1 / 2$) increments, average samples
- Example: Double sampling = increments of $1 / 2=9$ color values averaged for each pixel

Average 9 (x, y) values to find pixel color

Postfiltering

- Supersampling weights all samples equally
- Post-filtering: use unequal weighting of samples
- Compute pixel value as weighted average
- Samples close to pixel center given more weight

Sample weighting

$1 / 16$	$1 / 16$	$1 / 16$
$1 / 16$	$1 / 2$	$1 / 16$
$1 / 16$	$1 / 16$	$1 / 16$

Antialiasing in OpenGL

- Many alternatives
- Simplest: accumulation buffer
- Accumulation buffer: extra storage, similar to frame buffer
- Samples are accumulated
- When all slightly perturbed samples are done, copy results to frame buffer and draw

Antialiasing in OpenGL

- First initialize:
- glutInitDisplayMode (GLUT SINGLE | GLUT_RGB | GLUT_ACCUM | GLUT_DEPTH) ;
- Zero out accumulation buffer
- glClear(GLUT_ACCUM_BUFFER_BIT) ;
- Add samples to accumulation buffer using
- glAccum ()

Antialiasing in OpenGL

- Sample code
- jitter[] stores randomized slight displacements of camera,
- factor, f controls amount of overall sliding

```
glClear(GL_ACCUM_BUFFER_BIT);
for(int i=0;i < 8; i++)
{
    cam.slide(f*jitter[i].x, f*jitter[i].y, 0);
    display( );
    glAccum(GL_ACCUM, 1/8.0);
}
glAccum(GL_RETURN, 1.0);
```

jitter.h
$-0.3348,0.4353$
0.2864, -0.3934

References

- Angel and Shreiner, Interactive Computer Graphics, $6^{\text {th }}$ edition
- Hill and Kelley, Computer Graphics using OpenGL, $3^{\text {rd }}$ edition, Chapter 9

