Painter’s HSR Algorithm

e Render polygons farthest to nearest
e Similar to painter layers oil paint

na

Viewer sees B behind A Render B then A

Depth Sort

e Requires sorting polygons (based on depth)
O(n log n) complexity to sort n polygon depths

Not every polygon is clearly in front or behind other

polygons
A

Zmax

i I szin
Polygons sorted by / tB E D

distance from COP Palygons =

Distance from COP

Easy Cases

e Case a: A lies behind all polygons

from COP

Distance

Polygons

e Case b: Polygons overlap in zbut notinxory

/

v
AP
/7

[/
A\

Hard Cases 1t
/B
P

cyclic overlap

Overlap in (x,y) and z ranges

penetration

Back Face Culling .

e Back faces: faces of opaque object that are “pointing
away” from viewer

e Back face culling: do not draw back faces (saves
resources)

v)
ack face -

e How to detect back faces?

Back Face Culling

e Goal: Test if a face F is is backface
e How? Form vectors

View vector, V

Normal N to face F

| . &

V

Backface test: F is backface if N.NV<O why??

Back Face Culling: Draw mesh front faces

void drawFrontFaces()

{

for(int f = 0;f < numFaces; f++)

{

if(isBackFace(f,) continue; < ifN.V<O
glDrawArrays(GL_POLYGON, 0, N);

View-Frustum Culling

Goal: Remove objects outside view frustum
Done by 3D clipping algorithm (e.g. Liang-Barsky)

Clipped

Not Clipped

Ray Tracing

e Ray tracing is another image space method

e Ray tracing: Cast a ray from eye through each

pixel into world.

e Ray tracing algorithm figures out: what object
seen in direction through given pixel?

™\
N

e

— 4

Topic of grad class

Combined z-buffer and Gouraud Shading (Hill) | ¢

e Can combine shading and hsr through scan line algorithm

for(int y = ybott; y <= ytop; y++) // for each scan line

{

for(each polygon){

find xleft and xright

find dleft, dright, and dinc

find colorleft and colorright, and colorinc

for(int x = xleft, c = colorleft, d = dleft; x <= xright;

4 color3
X++, c+= colorinc, d+= dinc)
if(d < d[x][y])
{
put c into the pixel at (x, y)
d[x][y] = d; // update closest depth
} ybott
} colorl

v

xleft xright

Computer Graphics (CS 4731)
Lecture 22: Rasterization: Line Drawing

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Rasterization

e Rasterization generates set of fragments
e Implemented by graphics hardware

e Rasterization algorithms for primitives (e.g lines,
circles, triangles, polygons)

Rasterization: Determine Pixels

N

(fragments) each primitive covers

D
7N
N

Fragments

Line drawing algorithm

e Programmer specifies (x,y) of end pixels

e Need algorithm to determine pixels on line path

NWPRUTONO®

(3/2)L_

0123 456789 101112

Line: (3,2) -> (9,6)

Which intermediate
pixels to turn on?

Line drawing algorithm

Pixel (x,y) values constrained to integer values

Computed intermediate values may be floats

Rounding may be required. E.g. (10.48, 20.51) rounded to

(10, 21)

Rounded pixel value is off actual line path (jaggy!!)
Sloped lines end up having jaggies
Vertical, horizontal lines, no jaggies

a)

v

Line Drawing Algorithm

e Slope-intercept line equation
v=mx+b

Given 2 end points (x0,y0), (x1, y1), how to
compute m and b?

:dy_ yl—y0 yO=m*x0+Db

m —
dx x1-x0 = b=y0-m*x0

(x1,y1)

(x0,y0)

Line Drawing Algorithm

e Numerical example of finding slope m:
(Ax, Ay) = (23, 41), (Bx, By) = (125, 96)

(125,96)

(23,41)

_By—Ay 96-41 55

= = = =0.5392
Bx—-Ax 125-23 102

m

Digital Differential Analyzer (DDA): ool
Line Drawing Algorithm
Consider slope of line, m: s 1
m=1

(x0,y0)

Step through line, starting at (x0,y0)
Case a: (m < 1) x incrementing faster

Step in x=1 increments, compute y (a fraction) and round
Case b: (m > 1) y incrementing faster

Step in y=1 increments, compute x (a fraction) and round

DDA Line Drawing Algorithm (Case a: m < 1) 5:

= x0 = y0
:Ay:yk+l_yk:yk+l_yk o v

AX X — X, 1

m

Illuminate pixel (x, round(y))

X=X+1 y=y+ m
:>yk+1:yk+m

Illuminate pixel (x, round(y))

(x1,y1)
/ X=X+1 y=y+ m
Illuminate pixel (x, round(y))
]
“.' Until x == x1
7‘/./ Example, if first end point is (0,0)
7] Example, if m = 0.2
\ Step 1: x =1,y = 0.2 => shade (1,0)
\ Step 2: x = 2, y = 0.4 => shade (2, 0)

\ Step 3: x=3,y = 0.6 =>shade (3, 1)
(x0, y0) ... etc

DDA Line Drawing Algorithm (Case b: m > 1)

AY Y~ Vi 1 x=x0 V=0
m = = = . .
AX X, — X, X, — X, Illuminate pixel (round(x), y)
1 y=y+1 X=X+ 1/m
= Keyg = Xy +—
m Illuminate pixel (round(x), y)
(x1,y1)
pd y=y+1 X=X+1/m
L
’q
[ij Illuminate pixel (round(x), y)
Untily ==y1
Example, if first end point is (0,0)
] if 1/m = 0.2
X Step1:y =1, x =0.2 => shade (0,1)
\ Step 2: y = 2, x = 0.4 => shade (0, 2)
‘\ Step 3: y= 3, x = 0.6 => shade (1, 3)

(Xolyo) ... etc

DDA Line Drawing Algorithm Pseudocode

compute m;
if m< 1:
{
float y = yO; // initial value
for(int x = x0; x <= x1; x++, y += m)
setPixel (x, round(y))

}
else // m > 1
{
float x = x0; // initial wvalue
for(int vy = y0;, y <=yl; y++, x += 1/m)
setPixel (round(x), y):

e Note: setPixel (x, y) writescurrent colorinto pixel in column x and row
y in frame buffer

Line Drawing Algorithm Drawbacks

e DDA is the simplest line drawing algorithm

Not very efficient
Round operation is expensive

e Optimized algorithms typically used.

Integer DDA
E.g.Bresenham algorithm

e Bresenham algorithm
Incremental algorithm: current value uses previous value
Integers only: avoid floating point arithmetic

Several versions of algorithm: we’ll describe midpoint
version of algorithm

References

e Angel and Shreiner, Interactive Computer Graphics,
6t edition

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition, Chapter 9

